Reproducibly building artifacts that
contain embedded signatures

Martin Schwaighofer

1/24

Dependency Graph

Dependency Graph

+ https://commons.wikimedia.org/wiki/File:Dark matter.jpg 5,

https://commons.wikimedia.org/wiki/File:Dark_matter.jpg

Dependency Graph

424

Small hint about tooling

e nix build --rebuild
o Re-runs individual build steps

5/24

Small hint about tooling

e nix build --rebuild
o Re-runs individual build steps

Issues with reproducing signatures

o they might be anywhere
o nested deeply in the final artifact

6/24

Small hint about tooling

e nix build --rebuild
o Re-runs individual build steps

Issues with reproducing signatures

o they might be anywhere
o nested deeply in the final artifact
« Signature scheme might not be deterministic

7] 24

Small hint about tooling

e nix build --rebuild
o Re-runs individual build steps

Issues with reproducing signatures

o they might be anywhere

o nested deeply in the final artifact
« Signature scheme might not be deterministic
« We might not have access to the key

8/24

Small hint about tooling

e nix build --rebuild
o Re-runs individual build steps

Issues with reproducing signatures

o they might be anywhere

o nested deeply in the final artifact
« Signature scheme might not be deterministic
« We might not have access to the key

If we can't avoid the signature,

9/24

Small hint about tooling

e nix build --rebuild
o Re-runs individual build steps

Issues with reproducing signatures

o they might be anywhere

o nested deeply in the final artifact
« Signature scheme might not be deterministic
« We might not have access to the key

If we can't avoid the signature,
let's manage the problem and verify the signature instead!

10/ 24

Rough ldea

{unsigned - key | key fingerprint}
Signing : \
v
unverified
Verification l
verified

e One derivation for signing, one derivation for verification.

11/24

Rough ldea

{unsigned - key | key fingerprintJ
Signing \
\ 4
unverified
Verification l
verified

e One derivation for signing, one derivation for verification.
e Reproducing verification makes it unecessary to trust the
signing derivation. 12 /24

Signing

let

unverified = pkgs.runCommandLocal "sign-apk" {

}

buildInputs = [pkgs.apksigner];

mkdir -p $Sout

cp ${unsigned}/app-unsigned.apk .

apksigner sign --ks ${keystore-location} [...] \
app-unsigned.apk

cp app-unsigned.apk $Sout/app-signed.apk

13/24

Signing

let

unverified = pkgs.runCommandLocal "sign-apk" {

}

buildInputs = [pkgs.apksigner];

mkdir -p $Sout

cp ${unsigned}/app-unsigned.apk .

apksigner sign --ks ${keystore-location} [...] \
app-unsigned.apk

cp app-unsigned.apk $Sout/app-signed.apk

load bearing comment:
S{key-fingerprint}
makes derivation depend on key

14/ 24

Signing

let

unverified = pkgs.runCommandLocal "sign-apk" {

}

buildInputs = [pkgs.apksigner];

mkdir -p $Sout

cp ${unsigned}/app-unsigned.apk .

apksigner sign --ks ${keystore-location} [...] \
app-unsigned.apk

cp app-unsigned.apk $Sout/app-signed.apk

load bearing comment:
S{key-fingerprint}
makes derivation depend on key

TODO:
* verify key fingerprint matches signature we produced
- so we can't upload the wrong thing to a substituter

',
5

15/24

\lerifying

let

verified = pkgs.runCommandLocal "verify-apk" {
buildInputs = [pkgs.apksigner];
VERIFIES = unverified;

} []
mkdir -p $Sout
keyfp=${key-fingerprint}
apksigner verify --print-certs \

${unverified}/app-signed.apk \
| tee signatures.log

cat signatures.log | grep SHA-256 | grep Skeyfp

echo "signed with Skeyfp"
cp $S{unverified}/app-signed.apk Sout/app-signed.apk

16 /24

\lerifying

let

verified = pkgs.runCommandLocal "verify-apk" {
buildInputs = [pkgs.apksigner];
VERIFIES = unverified;

} 11
mkdir -p $Sout
keyfp=${key-fingerprint}
apksigner verify --print-certs \

${unverified}/app-signed.apk \
| tee signatures.log

cat signatures.log | grep SHA-256 | grep Skeyfp
echo "signed with Skeyfp"
cp $S{unverified}/app-signed.apk Sout/app-signed.apk

TODO:
* verify unsigned artifact matches expectation

Ty,
s

17 /24

Adapted r13y.com tool to display results

193 out of 194 (99.48%) paths in tl
packages.x86 64-linux.default inst
image are reproducible!

1 unchecked

unreproduced paths

unchecked paths

® /nix/store/jxqdp2rrzgigxy4ildkvvgl2m9ymdfgw-impure.drv (verified by /nix/store
/sz19x1br2lrlgjasviknz8vam2k74nkn-verify.drv)

 https://github.com/mschwaig/rl3y.com/tree/use-nix-
command
« That code doesn't really work outside a demo yet. 18/24

https://github.com/mschwaig/r13y.com/tree/use-nix-command

Thanks and please say hello

Martin Schwaighofer
PhD student with René Mayrhofer at

o Institute of Networks and Security

o Johannes Kepler University Linz

) martin.schwaighofer@ins.jku.at

‘4 https://github.com/mschwaig
% https://twitter.com/mschwaig
Researching reproducibility and its applications
Looking for feedback and collaborators 19/24

mailto:martin.schwaighofer@ins.jku.at
https://github.com/mschwaig
https://twitter.com/mschwaig

Bonus slides

20/ 24

Simple Opinionated AOSP builds

Projects

Android Security Projects

at the Institute of Networks and Security

Simple Opinionated AOSP builds by an external Party (SOAP)

The SOAP project aims to build AOSP in a reproducible manner and identify differences to the reference builds provided by

Google. As reference builds we track a selection of the following:

= Factory images for phones by Google
= Generic system images as provided by Android CI

The project enables the broader Android community, as well as any interested third parties, to track differences differences
between AOSP and official Google builds. Furthermore, it can act as basis for future changes improving the reproduceability of
Android.

Reproducible builds in general
Reproducible builds in general have been widely recognized as an important step for improving trust in executable binaries. More general information on

reproducible builds can be found at . More specifically for Android, increased reproduceability bridges the gap between source code provided by the AOSP
and the factory images running on millions of Google phones today.

« Web: https://android.ins.jku.at/reproducible-builds/
« Paper: https://dl.acm.org/doi/10.1145/3507657.3528537

21/24

https://android.ins.jku.at/reproducible-builds/
https://dl.acm.org/doi/10.1145/3507657.3528537

What isdiffoscope

Input:

diffoscope --html filel.img file2.1img

Output:
/home/dev/aosp/build/android-12.0.0_r4/raven-user/Google/android-info.txt vs. 367 B
/home/dev/aosp/build/android-12.0.0_r4/aosp_raven-user/Ubuntul8.04/android-info.txt 1
Offset 1, 6 lines modified Offset 1, 1 lines modified
1 require-board=oriole|raven|slider|whitefin
1 require-board=slider|whitefin|oriole|raven
2 require-version-bootloader=slider-1.0-7683913

Example Source: https://android.ins.jku.at/soap/android-
12.0.0 r4 raven-user Google android-12.0.0 r4 aosp raven-
user docker-Ubuntul8.04/android-info.txt.diffoscope.html-
dir/index.html

22 [24

https://android.ins.jku.at/soap/android-12.0.0_r4_raven-user_Google__android-12.0.0_r4_aosp_raven-user_docker-Ubuntu18.04/android-info.txt.diffoscope.html-dir/index.html

What is r13y.com

R..BY: NixOS

Is NixOS Reproducible?

Tracking: nixos-unstable'S nixos.iso_minimal.x86_64-1linux job for
x86_64-1inux.

Build via:

git clone https://github.com/nixos/nixpkgs.git

cd nixpkgs

git checkout 34a7b3142e34796133fcb3f9c857d7b17982fdaa

nix-build ./nixos/release-combined.nix -A nixos.nixos.iso_minimal.x86_64-linux

1733 out of 1737 (99.77%) paths in the
nixos.iso_minimal.x86_64-linux installation
image are reproducible!

2 unchecked

unreproduced paths

e /nix/store/5wmvyzg9a3zq5qk48w3v5wfyjx5h6n6x-python3-3.9.13.drv
» (diffoscope) out

® /nix/store/waa7859v2gqnrn8lwdglmhyvcc38d418-rust-chindgen-0.23.0.drv
 (diffoscope) out

« Website: https://r13y.com/
« Tool that generates it:
https://github.com/grahamc/r13y.com 23 /24

https://r13y.com/
https://github.com/grahamc/r13y.com

Acknowledgements

This work has been carried out within the scope of Digidow,
the Christian Doppler Laboratory for Private Digital
Authentication in the Physical World. We gratefully
acknowledge financial support by the Austrian Federal
Ministry for Digital and Economic Affairs, the National
Foundation for Research, Technology and Development, the
Christian Doppler Research Association, 3 Banken IT GmbH,
ekey biometric systems GmbH, Kepler Universitatsklinikum
GmbH, NXP Semiconductors Austria GmbH & Co KG, and
Osterreichische Staatsdruckerei GmbH.

24 [24

