
Reproducibly building artifacts that
contain embedded signatures

Martin Schwaighofer

1 / 24

Dependency Graph

2 / 24

Dependency Graph

https://commons.wikimedia.org/wiki/File:Dark_matter.jpg 3 / 24

https://commons.wikimedia.org/wiki/File:Dark_matter.jpg

Dependency Graph

4 / 24

Small hint about tooling
nix build --rebuild

Re-runs individual build steps

5 / 24

Small hint about tooling
nix build --rebuild

Re-runs individual build steps

Issues with reproducing signatures
they might be anywhere

nested deeply in the final artifact

6 / 24

Small hint about tooling
nix build --rebuild

Re-runs individual build steps

Issues with reproducing signatures
they might be anywhere

nested deeply in the final artifact
Signature scheme might not be deterministic

7 / 24

Small hint about tooling
nix build --rebuild

Re-runs individual build steps

Issues with reproducing signatures
they might be anywhere

nested deeply in the final artifact
Signature scheme might not be deterministic
We might not have access to the key

8 / 24

Small hint about tooling
nix build --rebuild

Re-runs individual build steps

Issues with reproducing signatures
they might be anywhere

nested deeply in the final artifact
Signature scheme might not be deterministic
We might not have access to the key

If we can't avoid the signature,

9 / 24

Small hint about tooling
nix build --rebuild

Re-runs individual build steps

Issues with reproducing signatures
they might be anywhere

nested deeply in the final artifact
Signature scheme might not be deterministic
We might not have access to the key

If we can't avoid the signature,
let's manage the problem and verify the signature instead!

10 / 24

Rough Idea

One derivation for signing, one derivation for verification.

11 / 24

Rough Idea

One derivation for signing, one derivation for verification.
Reproducing verification makes it unecessary to trust the
signing derivation. 12 / 24

Signing
let
 unverified = pkgs.runCommandLocal "sign-apk" {
 buildInputs = [pkgs.apksigner];
 } ''
 mkdir -p $out
 cp ${unsigned}/app-unsigned.apk .
 apksigner sign --ks ${keystore-location} [...] \
 app-unsigned.apk

 cp app-unsigned.apk $out/app-signed.apk

13 / 24

Signing
let
 unverified = pkgs.runCommandLocal "sign-apk" {
 buildInputs = [pkgs.apksigner];
 } ''
 mkdir -p $out
 cp ${unsigned}/app-unsigned.apk .
 apksigner sign --ks ${keystore-location} [...] \
 app-unsigned.apk

 cp app-unsigned.apk $out/app-signed.apk

 # load bearing comment:
 # ${key-fingerprint}
 # makes derivation depend on key

14 / 24

Signing
let
 unverified = pkgs.runCommandLocal "sign-apk" {
 buildInputs = [pkgs.apksigner];
 } ''
 mkdir -p $out
 cp ${unsigned}/app-unsigned.apk .
 apksigner sign --ks ${keystore-location} [...] \
 app-unsigned.apk

 cp app-unsigned.apk $out/app-signed.apk

 # load bearing comment:
 # ${key-fingerprint}
 # makes derivation depend on key

 # TODO:
 # * verify key fingerprint matches signature we produced
 # - so we can't upload the wrong thing to a substituter
 '';
...

15 / 24

Verifying
let
 verified = pkgs.runCommandLocal "verify-apk" {
 buildInputs = [pkgs.apksigner];
 VERIFIES = unverified;
 } ''
 mkdir -p $out
 keyfp=${key-fingerprint}
 apksigner verify --print-certs \
 ${unverified}/app-signed.apk \
 | tee signatures.log

 cat signatures.log | grep SHA-256 | grep $keyfp
 echo "signed with $keyfp"
 cp ${unverified}/app-signed.apk $out/app-signed.apk

16 / 24

Verifying
let
 verified = pkgs.runCommandLocal "verify-apk" {
 buildInputs = [pkgs.apksigner];
 VERIFIES = unverified;
 } ''
 mkdir -p $out
 keyfp=${key-fingerprint}
 apksigner verify --print-certs \
 ${unverified}/app-signed.apk \
 | tee signatures.log

 cat signatures.log | grep SHA-256 | grep $keyfp
 echo "signed with $keyfp"
 cp ${unverified}/app-signed.apk $out/app-signed.apk

 # TODO:
 # * verify unsigned artifact matches expectation
 '';
...

17 / 24

Adapted r13y.com tool to display results

https://github.com/mschwaig/r13y.com/tree/use-nix-
command
That code doesn't really work outside a demo yet. 18 / 24

https://github.com/mschwaig/r13y.com/tree/use-nix-command

Thanks and please say hello 👋

Martin Schwaighofer
PhD student with René Mayrhofer at

Institute of Networks and Security
Johannes Kepler University Linz

📩 martin.schwaighofer@ins.jku.at
👾 https://github.com/mschwaig
🐦 https://twitter.com/mschwaig
Researching reproducibility and its applications
Looking for feedback and collaborators 19 / 24

mailto:martin.schwaighofer@ins.jku.at
https://github.com/mschwaig
https://twitter.com/mschwaig

Bonus slides

20 / 24

Simple Opinionated AOSP builds

Web: https://android.ins.jku.at/reproducible-builds/
Paper: https://dl.acm.org/doi/10.1145/3507657.3528537

21 / 24

https://android.ins.jku.at/reproducible-builds/
https://dl.acm.org/doi/10.1145/3507657.3528537

What is diffoscope
Input:

diffoscope --html file1.img file2.img

Output:

Example Source:
https://android.ins.jku.at/soap/android-
12.0.0_r4_raven-user_Google__android-12.0.0_r4_aosp_raven-
user_docker-Ubuntu18.04/android-info.txt.diffoscope.html-
dir/index.html

22 / 24

https://android.ins.jku.at/soap/android-12.0.0_r4_raven-user_Google__android-12.0.0_r4_aosp_raven-user_docker-Ubuntu18.04/android-info.txt.diffoscope.html-dir/index.html

What is r13y.com

Website: https://r13y.com/
Tool that generates it:
https://github.com/grahamc/r13y.com 23 / 24

https://r13y.com/
https://github.com/grahamc/r13y.com

Acknowledgements
This work has been carried out within the scope of Digidow,
the Christian Doppler Laboratory for Private Digital
Authentication in the Physical World. We gratefully
acknowledge financial support by the Austrian Federal
Ministry for Digital and Economic Affairs, the National
Foundation for Research, Technology and Development, the
Christian Doppler Research Association, 3 Banken IT GmbH,
ekey biometric systems GmbH, Kepler Universitätsklinikum
GmbH, NXP Semiconductors Austria GmbH & Co KG, and
Österreichische Staatsdruckerei GmbH.

24 / 24

