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Small hint about tooling
nix build --rebuild

Re-runs individual build steps

5 / 24



Small hint about tooling
nix build --rebuild

Re-runs individual build steps

Issues with reproducing signatures
they might be anywhere

nested deeply in the final artifact

6 / 24



Small hint about tooling
nix build --rebuild

Re-runs individual build steps

Issues with reproducing signatures
they might be anywhere

nested deeply in the final artifact
Signature scheme might not be deterministic

7 / 24



Small hint about tooling
nix build --rebuild

Re-runs individual build steps

Issues with reproducing signatures
they might be anywhere

nested deeply in the final artifact
Signature scheme might not be deterministic
We might not have access to the key

8 / 24



Small hint about tooling
nix build --rebuild

Re-runs individual build steps

Issues with reproducing signatures
they might be anywhere

nested deeply in the final artifact
Signature scheme might not be deterministic
We might not have access to the key

If we can't avoid the signature,

9 / 24



Small hint about tooling
nix build --rebuild

Re-runs individual build steps

Issues with reproducing signatures
they might be anywhere

nested deeply in the final artifact
Signature scheme might not be deterministic
We might not have access to the key

If we can't avoid the signature,
let's manage the problem and verify the signature instead!

10 / 24



Rough Idea

One derivation for signing, one derivation for verification.
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Rough Idea

One derivation for signing, one derivation for verification.
Reproducing verification makes it unecessary to trust the
signing derivation. 12 / 24



Signing
let
  unverified = pkgs.runCommandLocal "sign-apk" {
    buildInputs = [ pkgs.apksigner ];
  } ''
    mkdir -p $out
    cp ${unsigned}/app-unsigned.apk .
    apksigner sign --ks ${keystore-location} [...] \
                                      app-unsigned.apk

    cp app-unsigned.apk $out/app-signed.apk
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Signing
let
  unverified = pkgs.runCommandLocal "sign-apk" {
    buildInputs = [ pkgs.apksigner ];
  } ''
    mkdir -p $out
    cp ${unsigned}/app-unsigned.apk .
    apksigner sign --ks ${keystore-location} [...] \
                                      app-unsigned.apk

    cp app-unsigned.apk $out/app-signed.apk

    # load bearing comment:
    # ${key-fingerprint}
    # makes derivation depend on key

    # TODO:
    # * verify key fingerprint matches signature we produced
    #   - so we can't upload the wrong thing to a substituter
    '';
...
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Verifying
let
  verified = pkgs.runCommandLocal "verify-apk" {
    buildInputs = [ pkgs.apksigner ];
    VERIFIES = unverified;
  } ''
    mkdir -p $out
    keyfp=${key-fingerprint}
    apksigner verify --print-certs \
              ${unverified}/app-signed.apk \
                          | tee signatures.log

    cat signatures.log | grep SHA-256 | grep $keyfp
    echo "signed with $keyfp"
    cp ${unverified}/app-signed.apk $out/app-signed.apk
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Verifying
let
  verified = pkgs.runCommandLocal "verify-apk" {
    buildInputs = [ pkgs.apksigner ];
    VERIFIES = unverified;
  } ''
    mkdir -p $out
    keyfp=${key-fingerprint}
    apksigner verify --print-certs \
              ${unverified}/app-signed.apk \
                          | tee signatures.log

    cat signatures.log | grep SHA-256 | grep $keyfp
    echo "signed with $keyfp"
    cp ${unverified}/app-signed.apk $out/app-signed.apk

    # TODO:
    # * verify unsigned artifact matches expectation
    '';
...

17 / 24



Adapted r13y.com tool to display results

https://github.com/mschwaig/r13y.com/tree/use-nix-
command
That code doesn't really work outside a demo yet. 18 / 24
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Martin Schwaighofer
PhD student with René Mayrhofer at
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📩 martin.schwaighofer@ins.jku.at
👾 https://github.com/mschwaig
🐦 https://twitter.com/mschwaig
Researching reproducibility and its applications
Looking for feedback and collaborators 19 / 24
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Bonus slides
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Simple Opinionated AOSP builds

Web: https://android.ins.jku.at/reproducible-builds/
Paper: https://dl.acm.org/doi/10.1145/3507657.3528537
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What is diffoscope
Input:

diffoscope --html file1.img file2.img

Output:

Example Source:
https://android.ins.jku.at/soap/android-
12.0.0_r4_raven-user_Google__android-12.0.0_r4_aosp_raven-
user_docker-Ubuntu18.04/android-info.txt.diffoscope.html-
dir/index.html
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What is r13y.com

Website: https://r13y.com/
Tool that generates it:
https://github.com/grahamc/r13y.com 23 / 24
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