
JOHANNESKEPLER
UNIVERSITY LINZ
Altenberger Straße 69
4040 Linz, Austria
jku.at

Author
DI Philipp Hofer, BSc
01610705

Submission
Institute of
Networks and Security

Thesis Supervisor and
First Evaluator
Univ.-Prof. Dr.
RenéMayrhofer

Second Evaluator
Prof. Dr.Kristof Van
Laerhoven

Assistant Thesis
Supervisor
Dr.Michael Roland

September 2024

Enhancing
Privacy-Preserving
Biometric
Authentication through
Decentralization

Doctoral Thesis
to confer the academic degree of

Doktor der Technischen Wissenschaften
in the Doctoral Program

Technische Wissenschaften

https://jku.at/

Abstract

This thesis explores the potential of decentralized technologies for enhancing
privacy and operational efficiency within biometric authentication systems.
Thewidespreaduse of centralized biometric systems is associatedwith signifi-
cant risks, such as data breaches and privacy violations, highlighted by vulner-
abilities in systems like India’s Aadhaar. Promoting a shift towards decentral-
ized frameworks, it allows users to control where their personal data is stored,
aiming to reduce the risks of large-scale unauthorized access.

This research aims to enhance biometric systems for embedded devices
through a holistic approach that progresses systematically from individual
data elements, specifically embeddings, to complete application scenarios
utilizing state-of-the-art technologies. The study begins by reducing the
embedding size by 96 %, substantially increasing the processing efficiency
of personal identifiers. Subsequently, the focus shifts to optimizing the most
time-intensive component of the sensor by incorporating multiple face de-
tection models that enhance specific operational efficiencies. Furthermore,
developing a domain-specific sensor language allows for a precise definition
of performance standards across various applications, facilitating a tailored
and fully realized implementation that meets real-world requirements.

Testing a real-world prototype with cameras that incorporate the suggested
improvements validates the effectiveness of decentralized biometric systems.
This research demonstrates practical, efficient, and decentralizedmethods for
authentication, making a significant contribution to the field and setting the
stage for future studies in secure digital solutions focused on privacy.

ii

Kurzfassung

In dieser Arbeit wird das Potenzial dezentraler Technologien zur Verbesserung
desDatenschutzes undder Effizienz biometrischer Authentifizierungssysteme
untersucht. Der weit verbreitete Einsatz zentralisierter biometrischer Systeme
istmit erheblichenRisiken verbunden,wie etwaDatenschutzverletzungen und
Eingriffen in die Privatsphäre, die durch Schwachstellen in Systemen wie dem
indischen Aadhaar-System deutlich werden. Durch die Verlagerung zu dezen-
tralen Systemen können dieNutzer bestimmen,wo die persönlichenDaten ge-
speichert werden, um das Risiko eines unbefugten Zugriffs zu verringern.

Diese Forschung zielt darauf ab, biometrische Systeme für eingebettete Gerä-
te durch einen ganzheitlichen Ansatz zu verbessern. Dabei wird systematisch
von einzelnenDatenelementenbis hin zu vollständigenAnwendungsszenarien
fortgeschritten und modernste Technologien genutzt. Die Studie beginnt mit
einer 96-prozentigen Reduzierung der Größe von Embeddings, wodurch die
Verarbeitungseffizienz von persönlichen Identifikatoren erheblich gesteigert
wird. Anschließendwird der Schwerpunkt auf dieOptimierungder zeitaufwen-
digstenKomponente des Sensors gelegt, indemmehrereModelle zurGesichts-
erkennung integriertwerden.Die Entwicklung einer Sensorsprache ermöglicht
die präzise Definition von biometrischen Anforderungen für verschiedene An-
wendungen und erleichtert so eine maßgeschneiderte und vollständig reali-
sierte Implementierung, die den realen Anforderungen gerecht wird.

Die Wirksamkeit dezentraler biometrischer Systeme wird durch einen Proto-
typ mit den vorgeschlagenen Verbesserungen validiert. Diese Forschungsar-
beit demonstriert praktische, effizienteunddezentralisierteMethodenzurAu-
thentifizierung und leistet einen bedeutenden Beitrag in diesem Bereich. Sie
schafft die Voraussetzungen für künftige Studien zu sicheren digitalen Lösun-
gen, die sich auf den Datenschutz konzentrieren.

iii

Funding

This work has been carried out within the scope of Digidow, the Christian
DopplerLaboratory forPrivateDigital Authentication in thePhysicalWorld.We
gratefully acknowledge financial support by the Austrian Federal Ministry of
Labour and Economy, the National Foundation for Research, Technology and
Development, the Christian Doppler Research Association, 3 Banken IT GmbH,
ekeybiometric systemsGmbH,KeplerUniversitätsklinikumGmbH,NXPSemi-
conductorsAustriaGmbH&CoKG, andÖsterreichische Staatsdruckerei GmbH.

iv

Acknowledgements

Just as a decentralized system relies onmultiple nodes, this thesis owes its ex-
istence to a network of incredible individuals. At the core of this network was
my advisor, René Mayrhofer. Your guidance was as precise and reliable as a
well-tuned facial recognition algorithm. Our efficient meetings consistently
recalibrated my focus and motivated me to push the boundaries of decentral-
ized authentication. Thank you for being the secure backbone of my academic
pursuits.

The Digidow team and my colleagues served as distributed nodes of support,
contributing invaluable collaboration, fresh ideas, andunwavering encourage-
ment. You have all left your fingerprints on this work, and while I am deeply
grateful to everyone, I would like to highlight the contributions of two individ-
uals:Michael Roland, who has an uncanny ability to spot the tiniest of errors—
thank you for your meticulous and invaluable feedback. And Gerald Schoiber,
for guiding me through the twists and turns of Rust and helping me navigate
even the trickiest of ascents with a smile.

My family has been the trusted private key to my success, unlocking oppor-
tunities and helping me decrypt challenges throughout this academic journey.
Your steadfast support has been the foundation of all my achievements.

To Marie: while I explored the intricacies of decentralized authentication, you
were my constant, centralized source of support. Thank you for reminding me
of the beauty beyond the realmof biometrics anddecentralization, and for your
endless patience in reviewingmy work.

Completing this thesis has been a long journey, and I am both proud and re-
lieved to reach this milestone, ready to embark on new endeavors with the
knowledge and experience gained.

v

Contents

Abstract ii

Kurzfassung iii

List of Tables ix

List of Figures x

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 2
1.3 Approach . 3
1.4 Contributions . 4
1.5 Publications . 5
1.6 Outline . 6

2 Background 9
2.1 Decentral biometric authentication . 9

2.1.1 Definitions . 12
2.1.2 Centralized biometric authentication 14
2.1.3 Biometric authentication overview 15
2.1.4 Sensor . 18
2.1.5 Matcher . 27
2.1.6 Aggregator . 28
2.1.7 Performance evaluationmetrics and datasets 29
2.1.8 Security and privacy considerations 30

2.2 Datasets . 32
2.2.1 Celebrities in Frontal-Profile (CFP) 32
2.2.2 Real-world mask dataset . 32
2.2.3 WIDER Face . 33
2.2.4 Labeled Faces in the Wild (LFW) 33
2.2.5 Cross-Pose Labeled Faces in the Wild (CPLFW) 34
2.2.6 CelebFaces Attributes (CelebA) 34

3 Understanding facial features in biometric authentication 35
3.1 State-of-the-art face pipeline . 36

3.1.1 Face detection . 37
3.1.2 Face recognition . 38
3.1.3 Summary . 39

3.2 Heuristics for successful face pipeline 40
3.2.1 Experimental setup . 41
3.2.2 Detailed analysis . 41

vi

Contents vii

3.3 Dataset adaptation for key facial feature analysis 44
3.3.1 Related work . 45
3.3.2 Experimental results . 46

3.4 Experimental results . 48
3.4.1 Computer modified images from the CFP dataset 48
3.4.2 Grid . 49
3.4.3 Mask . 53
3.4.4 Real world mask images . 53

3.5 MTCNN face-in-face malfunction . 53

4 Shrinking giants: The power of tiny embeddings 57
4.1 Related work . 59
4.2 Element reduction . 60
4.3 Data quantization . 69
4.4 Proposed pipeline . 71
4.5 Practical implications of compact embeddings 71

5 One template to rule them all: Fusing embeddings 73
5.1 Multi-image face recognition . 75
5.2 Embedding aggregation . 77
5.3 Dataset adaptation . 78
5.4 Single setting performance . 84
5.5 Related work . 87

6 The speed of sight: Optimizing face detection for embedded systems 89
6.1 Intricacies of SOTA face pipelines . 90

6.1.1 Face detection . 91
6.1.2 Face recognition . 92

6.2 State-of-the-art face recognition pipeline 93
6.2.1 Performance baseline . 94
6.2.2 Baseline improvements . 95

6.3 Inference-time/accuracy tradeoff . 98
6.4 Fast and accurate face recognition pipeline 99

7 Biometric Domain Specific Sensor Language (BioDSSL) 102
7.1 Complexity and rigidity of current systems 103
7.2 Proposed solution: BioDSSL . 104
7.3 Scope and goals . 105
7.4 Traditional approach . 105

7.4.1 Evolution of biometric identification systems 106
7.4.2 Diverse sensors andmodalities in biometrics 106
7.4.3 Challenges in current systems 107
7.4.4 Previous attempts at solutions and their limitations 108

7.5 BioDSSL: A Domain Specific Sensor Language 108
7.5.1 Concept and Design Principles of BioDSSL 108
7.5.2 Unique Features and Advantages 109

7.6 Implementation . 110
7.7 Case studies and experimental results 111

7.7.1 Experimental setup . 111
7.7.2 Case studies demonstrating the efficacy of BioDSSL 111

Contents viii

7.8 Attacks . 113

8 When Theory Hits Reality: Living lab prototype and Digidow integration 115
8.1 Digidow . 116

8.1.1 Components . 116
8.1.2 Interaction . 118

8.2 Living lab prototype . 119
8.2.1 Hardware . 120
8.2.2 Programming language . 121
8.2.3 Hallway scenario . 122
8.2.4 Single door scenario . 125

8.3 Sensor . 125
8.3.1 face-lib . 126
8.3.2 sensor-lib . 129
8.3.3 Sensor orchestration . 132

8.4 Results . 133

9 Conclusion and outlook 135
9.1 Conclusion . 135
9.2 Future work . 136

Bibliography 137

Appendix A Code 158

List of Tables

2.1 Biometric Methods and their Characteristics 19

3.1 Speed comparison of 2 state-of-the-art face-recognition algo-
rithms. 39

3.2 Misclassification rates for grid-2modification. 49
3.3 Accuracy for the flipped image in the grid-2 setting. 49
3.4 Accuracy for the flipped image in the grid-4 setting. 50
3.5 Accuracy for the flipped image in the grid-5 setting. 51
3.6 Results of three face detection algorithms (MTCNN, Retinaface,

and DLIB) on real-world mask dataset [224]. 52

4.1 Brute-force search of the best elements in the LFW dataset. 64
4.2 Greedy search for the best indices set using the first 32 elements. . 65

5.1 This table shows the average distances of the template embed-
ding to the test embeddings with respect to different aggrega-
tion strategies. The value in brackets represents the factor of the
distance of that strategy compared to the baseline. A factor of 2
means that the average distance of the baseline is twice as high
as this particular aggregation strategy. Formatches, a higher fac-
tor is favorable, while for non-matches, a lower factor is better.
The gray rows are displayed for comparison reasons only, as they
cheat and use information not available in production. 82

5.2 This table shows the average distance if only a subsection of the
training images are used. 86

5.3 This table shows the averagedistance if imageshavebeen selected
greedily. 87

ix

List of Figures

1.1 This image illustrates the progressive layers of my research,
starting with foundational improvements in embeddings, fol-
lowed by creating a comprehensive single-person representation
through integrating multiple embeddings. The next layer rep-
resents the development of a sensor based on this representa-
tion. Subsequently, this sensor is integrated into a practical ap-
plication, and finally, the outermost layer demonstrates the ap-
plication’s real-world impact and effectiveness. Each layer builds
upon the previous, symbolizing the cumulative advancement of
knowledge and technology throughout the thesis. 8

2.1 Visualization of differences between authentication, verification,
and identification. 12

2.2 Illustration highlighting the key distinctions between decentral-
ized and distributed systems. 13

2.3 An overview of the components within a biometric system, il-
lustrating the interaction and flow between the Sensor, Matcher,
and Aggregator components. The system starts with data acqui-
sition from a sensor, followed by segmentation, detection, and
feature extraction. TheMatcher compares extracted featureswith
stored biometric templates, with potential pre-selection and va-
lidity checks. TheAggregator compiles the results to decide on the
requiredaction, highlighting themodularity andflexibility inher-
ent in both centralized and decentralized biometric systems. 16

2.4 Example images of the CFP dataset. 32
2.5 Example images of the real-world mask dataset. 32
2.6 Example images of the WIDER face dataset. 33
2.7 Example images of the LFW dataset. 33
2.8 Example images of the CPLFW dataset. 34
2.9 Example images of the CelebA dataset. 34

3.1 Difference between face detection and face recognition. 37
3.2 Horizontal distance between eyes scaled by face width, grouped

by successful identification. 42
3.3 Vertical distance from the center of the eyes to the mouth scaled

by face height and grouped by successful identification. 42
3.4 Face area (in pixels) analyzed for recognition accuracy, showing

no clear threshold for success. 43
3.5 Face area (in pixels) analyzed for recognition accuracy with out-

liers removed, still showing no clear threshold for success. 43
3.6 Proposed modifications of the CFP dataset concerning blacking

out grid cells in various sizes. 47

x

List of Figures xi

3.7 Proposed modifications (landmarks-*) of the CFP dataset con-
cerning blacking out landmarks of the face. 47

3.8 Proposed modifications (grid-mask-{00-15}) of the CFP dataset
concerning simulating a face mask. 48

3.9 Misclassification results in percentage for simulated face mask
modification. 53

3.10 MTCNN detects the reflected person in both lenses while missing
the person wearing the eyeglasses. 54

3.11 15 exemplary images where MTCNN could not detect the person. . 54
3.12 15 exemplary images where MTCNN could detect the person. 55
3.13 MTCNN detects the original person (left-hand side in a) and b)).

If another person is inserted inside the head (right-hand side in
a) and b)), the original person is no longer detected. 56

4.1 The error rate on the LFW dataset correlates with embedding di-
mensionality, rapidly converging to 40/6000 errors. Using 100-
dimensional embeddings results in slightlymore errors (69) than
the full 512 dimensions (40). 62

4.2 Exploring potential index-dependent bias in the LFW dataset is
shown,whereinparticular index setsmight yield significantly su-
perior performance. This is assessed through 100 iterations, with
7, 32, 120, and 200 dimensions (top to bottom) randomly chosen
and subsequently tested for error rates. 63

4.3 In the LFW dataset, error rates obtained from the greedy search
are compared with those from the exhaustive brute-force search.
The first four elements align perfectly; thereafter, the perfor-
mance begins to exhibit a slight decline. Nevertheless, the similar
shape suggests that the greedy search is a satisfactory proxy. . . . 66

4.4 Greedy search over all 512 dimensions on the LFW dataset. 66
4.5 Comparative analysis of the greedy search against our other con-

figurations (initial and random elements). X-axis: Amount of di-
mensions used . 67

4.6 The shape of the error rate on the CPLFW dataset (shown here) is
similar to the error rate of LFW dataset (Fig. 4.1). 67

4.7 Cross-dataset index evaluation: Analysis of index contributions
to overall classification error in L2 distance metrics. A more sig-
nificant difference between the two bars signifies higher classifi-
cation inaccuracies related to a specific index. The blue bar rep-
resents a visualization of the LFW dataset, whereas the CPLFW
dataset is depicted in the red bar. Notably, the index contribu-
tions to the total distance exhibit striking similarities across both
datasets. 68

4.8 Visual representation of the error generated when only the corre-
sponding index is utilized. 69

4.9 Visualization of different scale factors. The optimal threshold,
which minimizes the combined rate of False Positives (FP) and
FalseNegatives (FN), is dynamically recalculated for each respec-
tive scale factor. 70

List of Figures xii

5.1 Distance of the embeddings to… . 78
5.2 Example images of a person from the CelebA dataset. 78
5.3 Distribution of number of people concerning their number of im-

ages. 79
5.4 Example images where Retinaface could not detect a person. 79
5.5 Average distance of template- to test-embeddings in CelebA

dataset. 81
5.6 Instance space of optimal vs average aggregation. 81
5.7 2 exemplary images of the LFW dataset of the 5 people with more

than 100 images. 83
5.8 Numeric embedding differences shown for 2 people from the LFW

dataset. 84
5.9 Rolling distance average of the aggregated embedding to the test

images. The y-axis shows the average distance to the test images
(orange→ greedy search; blue→ ordered). 86

6.1 Different distance functions for Arcface. Notice the magnified
scale; plotting the whole spectrum (0-1) would yield no dis-
cernible distinction. The green line is not visible, as using L2 and
COS distance functions yields an identical precision-recall curve.
The Area Under Curve (AUC) is not significantly different either:
AUCL2 = 0.99884653, AUCABS = 0.9988512, AUCCOS = 0.99884653. . . 94

6.2 The sizes of detected faces using Retinaface. Sizes larger than 99
pixels are not displayed as our focuswas on identifying the small-
est detectable faces. 96

6.3 L2 distance to reference embedding (full size face) using different
face sizes (smaller is better). 96

6.4 77% of images have more than 90% probability. 98
6.5 The figure illustrates the trade-off between inference-time and

accuracy for various face detection networks. The x-axis repre-
sents the inference time, while the y-axis represents the accuracy
of the networks. The solid line in the figure represents the Pareto
frontier, which is the optimal trade-off between accuracy and in-
ference time. 99

6.6 This plot adds our proposed models to the initial plot of Fig. 6.5,
which is represented by the dashed line. As visualized in the solid
line, our proposed Fast100, Fast 125, and Fast150 networks in-
crease the Pareto front in the inference-time/accuracy spectrum
Fast50 and Fast75 do not increase the border, as they are slower
and have less accuracy than ULFGFD. 101

7.1 This figure shows the architecture overviewof biometric systems,
with examples of different sensors (face, gait, and fingerprint-
recognition). The sensors capture biometric data from people
and send that representation (most commonly in form of a high-
dimensional vector) to a verifier. The verifier receives this in-
formation from one or more sensors and can then decide to trust
these sensings enough to perform an action. 104

List of Figures xiii

7.2 Different scenarios require a different trade-off between secu-
rity and usability. In some cases (e.g. border control) false pos-
itives should be drastically reduced. In exchange, some false neg-
atives might be acceptable, as additional (better) sensings could
take care of these. On the other hand, in a different scenario (e.g.
attendance tracking) the focus could be reducing false negatives,
as the consequences are less severe than a false positive. 109

8.1 The components proposed by the Digidow project [133]. 117
8.2 Physical setup of the hallway experiment. The corridor is moni-

tored by three strategically placed 4k cameras, ensuring compre-
hensive coverage of the entire space. This arrangement allows for
high-resolution observation and data collection across the length
of the hallway. 123

8.3 Top-down view of the experimental corridor showing the posi-
tions of three cameras strategically placed to provide full cover-
age of the hallway. Blue rectangles indicate the locations of signs
informing individuals about the ongoing experiment and the use
of facial recognition technology. 124

8.4 Components of the sensor code. 126
8.5 Face detection results using face-lib, showing bounding boxes,

facial landmarks, and confidence scores for detected faces. Image
source: pxphere.com (CC0) https://pxhere.com/en/photo/1438955 128

8.6 Performance analysis of the full face recognition pipeline. (Top)
Boxplot showing thedistributionofprocessing times for the com-
plete pipeline, including image acquisition, face detection, fea-
ture extraction, and matching against registered embeddings.
(Bottom) Probability density function of processing times, high-
lighting the overall speed distribution of the system. 133

Chapter 1

Introduction

1.1 Motivation

In today’s digital identity authentication landscape, biometric systems have
become the preferred standard because they provide rapid, accurate, and user-
friendly verification, surpassing traditional methods in security and conve-
nience [151]. Traditional methods like passwords, PINs, and physical tokens
often fall short in terms of security and convenience. Passwords can be for-
gotten or stolen, and physical tokens can be lost or duplicated. Biometric sys-
tems, which use unique biological traits such as fingerprints, facial features,
or iris patterns, offer a more reliable solution by ensuring that the authenti-
cation factor is inherently tied to the individual. However, biometric authen-
tication comes with its own set of problems, such as the potential for false
positives/negatives, privacy concerns, the risk of data breaches, and the non-
replaceability of compromised biometric data.

Centralizedbiometric systemshaveemergedas thepredominantmodel for im-
plementing these technologies. For instance, India’s Aadhaar systemexempli-
fies this model by consolidating biometric data, such as fingerprints and iris
scans, in a central database, allowing for efficient data management and rapid
authentication processes. Similarly, China’s social credit system integrates
biometric information to track and evaluate individuals’ behavior, showcasing
how centralization simplifies deployment and maintenance. By consolidating
biometric data in a single location, organizations can efficiently manage large
volumes of data and perform quick matches against a central database. This
model simplifies the deployment andmaintenance of biometric systems,mak-
ing it easier to integrate into various applications, frommobile devices to na-
tional identification programs and even corporate security systems.

However, the convenience and efficiency of centralized biometric systems
come with significant vulnerabilities that pose severe risks to privacy and se-
curity. The centralization of sensitive biometric data creates a single point of
failure, making these systems highly susceptible to large-scale data breaches.
High-profile incidents have demonstrated the catastrophic consequences of
such breaches. Millions of individuals’ personal data can be exposed, leading
to identity theft, fraud, and other malicious activities.

Moreover, centralizedbiometric systems inherently facilitate a level of surveil-
lance and control that conflicts with the principles of personal privacy and au-
tonomy. The concentration of data in the hands of a few entities—whether

1

1 Introduction 2

governments, corporations, or other organizations—raises concerns about
misuse and unauthorized access. This context sets the stage for exploring al-
ternative approaches to biometric authentication that prioritize decentraliza-
tion, aiming tomitigate the inherent risks of centralizedmodels and champion
user privacy and data sovereignty.

Addressing these challenges requires a shift in focus towards developing and
optimizingbiometric technologieswithindecentralized frameworks. This shift
is motivated by two goals: enhancing the security and efficiency of biometric
authentication processes and establish privacy-preserving mechanisms that
are resilient against the pitfalls of centralized data storage. This effort is rooted
in the understanding that the future of secure and convenient authentication
lies in systems that not only recognize individuals with high accuracy but also
respect and protect their privacy.

This thesis is part of the larger project Digidow1 aimed at showing the possibil-
ity of biometric authentication in a decentralized way. While Digidow encom-
passes various aspects of decentralizing biometric systems, this thesis specif-
ically focuses on making the sensor side more efficient. This research is dedi-
cated to overcoming the limitations posed by embedded systems, focusing on
creating scalable solutions that ensure robust authenticationacross a spectrum
of technological contexts,without needing large-scale (and thus likely central)
GPU clusters. The challenge lies in designing systems that are lightweight and
efficient, yet capable of performing biometric recognition tasks without rely-
ing on centralized infrastructure.

In essence, this work addresses some of the fundamental flaws of central-
ized biometric authentication systems by advancing the field towards de-
centralized, privacy-centric models. By leveraging the principles of decen-
tralization, this research aims to contribute to a new paradigm in biometric
authentication—one that decentralizes data control, enhances security, and
empowers users with greater autonomy over their personal information. The
ultimate goal is to contribute to the development of amore secure, private, and
user-centric digital identity verification system that aligns with our society’s
evolving needs and values.

1.2 Objectives

Theoverarchinggoal ofour research is todesignand implementanend-to-end
system that enables the use of biometric authentication on embedded devices,
meeting a set of key criteria:

1. Decentralization: The system should operate without reliance on central-
ized servers or entities for its core authentication functions. Awide range of
infrastructures should be supportedwithout leaning on centralized coordi-
nation or directories. A universal protocol should allow devices to discover
and authenticate each other autonomously, enabling a network where any
authorized registration can be seamlessly conducted. This protocol should

1https://digidow.eu

https://digidow.eu

1 Introduction 3

ensure that transmitting sensor data to the recognized individual does not
hinge on specific operators or even device implementations but is univer-
sally applicable, thereby fostering a truly decentralized and inclusive au-
thentication environment.

2. Executable on embedded device (low latency / template generation): Rec-
ognizing the impact of latency on user experience, the system aims for au-
thentication processes to be completed swiftly to foster user acceptance.
Matching the speed of contactless payments (300-500 ms) may be ambi-
tious for a distributed system. However, the design will strive to minimize
latency to levels comparable with or better than existing digital identity
verification times, ideally keeping total transaction times well under the
30-second threshold deemed acceptable for activities like border checks.

3. Feasibility: The proposed systemmust be practical to implement with cur-
rent technology, avoiding dependency on theoretical or unproven tech-
nologies. This feasibility ensures that the system can be developed, de-
ployed, and evaluated in real-world conditions, facilitating empirical as-
sessments of its effectiveness and areas for improvement.

By adhering to these objectives, our research to create a biometric authenti-
cation system that is not only technologically advanced and secure but also re-
spectful of user privacy and practical forwidespread adoption. This systemwill
pave theway for a newparadigm in authentication technology, specifically tai-
lored for the increasingly prevalent embedded devices in our digital ecosystem.

Non-Objectives

Within the confines of this thesis, the development or re-training of biometric
models is intentionally set aside.This approachstems fromastrategic choice to
prioritize the integration of existing state-of-the-art biometric technologies.
Such a decision is rooted in the desire for flexibility and adaptability. The bio-
metric field evolves swiftly, with newadvancements emerging regularly. Com-
mitting to a single, potentially quickly outdatedmodel would detract from our
system’s ability to evolve. Furthermore, training biometric models demands
significant computational resources and power. By sidestepping the creation
and training of new models, this research maintains a sharp focus on its core
aim: to design a decentralized, privacy-preserving authentication framework.
It leaves the specialized domain of biometric model innovation to those with a
primary focus in that field.

1.3 Approach

A thorough literature review is conducted to identify existing challenges in
centralized biometric systems and the potential benefits of decentralization.
The next step focuses on designing a decentralized framework for biometric
authentication. This involves developing efficient algorithms for data capture,
processing, and matching that can be executed on embedded devices. These

1 Introduction 4

algorithms are tested for performance and reliability in various conditions to
meet the necessary benchmarks. To validate our research, a living lab is imple-
mented as a real-world testing environment. This allows for iterative testing
and refinement, ensuring the system is both theoretically sound and practi-
cally viable. The research integrates existing biometric technologies to main-
tainflexibility and to leverage state-of-the-art advancements. Theoverall goal
is to create a scalable, privacy-preserving biometric sensor that can be imple-
mented in real-world scenarios, providing a practical alternative to central-
izedmodels.Ultimately, all components contribute to the creationof a scalable,
privacy-preserving biometric sensor, designed for implementation in real-
world scenarios as a practical alternative to centralized models.

1.4 Contributions

This doctoral research presents advancements in decentralized biometric au-
thentication systems, focusing on improving efficiency and applicability on
embedded devices.

The research begins with optimizing biometric embeddings, achieving a 96%
reduction in size. This significant reduction directly addresses the challenges
faced by decentralized systems, where limited processing power and storage
capacity are typical constraints. The streamlined embeddingsnot only enhance
the efficiency of these systems but also prove essential inmulti-party compu-
tation scenarios, wheremultiple parties collaborate while keeping their inputs
confidential. Moreover, in contexts where biometric data is stored on smart-
cards, the reduced size facilitates more efficient storage. This optimization
also plays a critical role in minimizing the bandwidth required for data trans-
mission, which is particularly important when, e.g., transferring embeddings
within Tor introduction cells. By reducing the data footprint, the research en-
hances both the practicality and security of decentralized biometric systems.

Building upon this foundation, the research addresses the challenge of imple-
menting facial recognition in resource-limited environments. Centralized sys-
tems often rely on largeGPU clusters tomanage the computational demands of
facial recognition,particularly the facedetectionstage,which is themost time-
consuming component of the recognition pipeline. I developed a multi-model
face detection approach that allows to carefully balance the trade-off between
processing speed and accuracy. Each model is optimized for specific facets of
the task, ensuring that the system remains both reliable and efficient.

In addition, I developed a domain-specific sensor language designed to en-
hance the flexibility of biometric sensors. This language provides a standard-
ized framework for defining andmanaging biometric requirements across dif-
ferent entities, ensuring that biometric data can be securely and efficiently
processed.

The research culminated in the creation and deployment of a functional pro-
totype, which involved the installation of three cameras in the hallway of our
institute and an additional camera at a private residence in a different location.

1 Introduction 5

This real-world implementation was key to assessing the practicality and ef-
fectiveness of the theoretical improvements explored in this thesis. By testing
the system under everyday conditions, the prototype provided clear evidence
of its performance and demonstrated the potential for future applications of
decentralized biometric systems in real-world scenarios.

This research not only advances the state of decentralized biometric authenti-
cation but also lays a strong foundation for future innovations in secure, ef-
ficient, and adaptable biometric systems, particularly in environments with
constrained resources and high privacy requirements.

1.5 Publications

Several sections of this thesis have been peer-reviewed and published in sci-
entific workshops, conferences, and journals, with me as the main author:

1. Hofer, Philipp, Michael Roland, Philipp Schwarz, Martin Schwaighofer,
and René Mayrhofer. 2021. Importance of different facial parts for face de-
tection networks. In 2021 9th IEEE International Workshop on Biometrics and
Forensics (IWBF). IEEE, Rome, Italy, (May 2021), pp. 1–6. DOI: 10.1109/IWB
F50991.2021.9465087

2. Hofer, Philipp, Michael Roland, Philipp Schwarz, and René Mayrhofer.
2023. Efficient Aggregation of Face Embeddings for Decentralized Face
Recognition Deployments. In Proceedings of the 9th International Conference
on Information Systems Security and Privacy (ICISSP 2023). SciTePress, Lis-
bon, Portugal, (February 2023), pp. 279–286. DOI: 10.5220/001159930000
3405

3. Hofer, Philipp, Michael Roland, René Mayrhofer, and Philipp Schwarz.
2023. Optimizing Distributed Face Recognition Systems through Efficient
Aggregationof Facial Embeddings.Advances inArtificial Intelligence andMa-
chine Learning, 3, 1, (February 2023), 693–711. DOI: 10.54364/AAIML.2023
.1146

4. Hofer, Philipp, Philipp Schwarz, Michael Roland, and René Mayrhofer.
2023. Face to Face with Efficiency: Real-Time Face Recognition Pipelines
on Embedded Devices. In 21st International Conference on Advances inMobile
Computing & Multimedia Intelligence (MoMM 2023). ACM, Bali, Indonesia,
(December 2023)

5. Hofer, Philipp, Philipp Schwarz, Michael Roland, and René Mayrhofer.
2024. Shrinking embeddings, not accuracy: Performance-Preserving Re-
duction of Facial Embeddings for Complex Face Verification Computations.
In 14th International Conference on Pattern Recognition Systems (ICPRS 2024).
IEEE, London, UK, (July 2024)

6. Hofer, Philipp, Philipp Schwarz, Michael Roland, and René Mayrhofer.
2024. BioDSSL: A Domain Specific Sensor Language for global, distributed,
biometric identification systems. In 12th IEEE International Conference on
Intelligent Systems (IEEE IS 2024). IEEE, Golden Sands, Bulgaria, (August
2024)

https://doi.org/10.1109/IWBF50991.2021.9465087
https://doi.org/10.1109/IWBF50991.2021.9465087
https://doi.org/10.5220/0011599300003405
https://doi.org/10.5220/0011599300003405
https://doi.org/10.54364/AAIML.2023.1146
https://doi.org/10.54364/AAIML.2023.1146

1 Introduction 6

Moreover, I havealso contributed toa fewnon-peer-reviewedpublicationsand
presentations, which contain results from this thesis:

1. Hofer, Philipp. 2022. Die Bedeutung verschiedener Gesichtsteile
für Gesichtserkennung und dessen Zusammenführung. In IKT-
Sicherheitskonferenz 2022. Vienna, Austria, (September 2022). https://www
.digidow.eu/publications/2022-hofer-iktsicherheitskonferenz/Hofer_20
22_IKTSicherheitskonferenz2022_Poster.pdf

2. Hofer, Philipp, Michael Roland, Philipp Schwarz, and René Mayrhofer.
2022. Efficient aggregation of face embeddings for decentralized face
recognition deployments (extended version). (December 2022). https://ar
xiv.org/abs/2212.10108

3. Hofer, Philipp. 2023. Dezentrale Gesichtserkennung. OCG Journal, 48, 1,
(April 2023), 14–15. https://www.ocg.at/sites/ocg.at/files/medien/pdf
s/OJ2023-01.pdf

Additionally, the following publications, where I contributed as a co-author,
have been published. These works are relevant to this thesis as they explore
gait recognition, which complements the biometric methods discussed in this
research, contributing to the broader understanding of biometric systems and
their applications:

1. Philipp Schwarz, Josef Scharinger, and Hofer, Philipp. 2021. Gait recogni-
tion with densePose energy images. In International Conference on Systems,
Signals and Image Processing. Springer, pp. 65–70

2. Philipp Schwarz,Hofer, Philipp, and Josef Scharinger. 2022. Gait Recogni-
tion Using 3D View-Transformation Model. In International Conference on
Computer Aided Systems Theory. Springer, pp. 452–459

In addition to these contributions, I am pleased to report that NDR reached out
tome for an interviewon face recognition, promptedby the impactofmyrecent
publications. The resulting documentary is scheduled for release in September
2024. Furthermore, although a side project, I was awarded a rectorate bonus
for my experiments in voice cloning, which, while tangential, contributed to
the broader interdisciplinary nature of this research.

1.6 Outline

The structure and flow of the thesis are visually summarized in Figure 1.1. The
journey begins with an overview of existing research and foundational con-
cepts in Chapter 2 “Background”. This sets the stage by reviewing the state-
of-the-art in biometric systems and highlighting the motivations for shifting
towards decentralized models.

Building on this foundation, “Understanding facial features in biometric au-
thentication” (Chapter 3), examines the components that constitute an em-
bedding and focusing on the significance of individual facial parts.

Following this, the discussion advances to “Shrinking giants: The power of
tiny embeddings” (Chapter 4), where strategies formaking single embeddings

https://www.digidow.eu/publications/2022-hofer-iktsicherheitskonferenz/Hofer_2022_IKTSicherheitskonferenz2022_Poster.pdf
https://www.digidow.eu/publications/2022-hofer-iktsicherheitskonferenz/Hofer_2022_IKTSicherheitskonferenz2022_Poster.pdf
https://www.digidow.eu/publications/2022-hofer-iktsicherheitskonferenz/Hofer_2022_IKTSicherheitskonferenz2022_Poster.pdf
https://arxiv.org/abs/2212.10108
https://arxiv.org/abs/2212.10108
https://www.ocg.at/sites/ocg.at/files/medien/pdfs/OJ2023-01.pdf
https://www.ocg.at/sites/ocg.at/files/medien/pdfs/OJ2023-01.pdf

1 Introduction 7

more efficient are explored. This chapter examines methods to reduce the size
of embeddings while maintaining their performance, thereby contributing to
the overall efficiency of the biometric system.

With these optimized embeddings in place, the focus shifts in “One template
to rule them all: Fusing embeddings” (Chapter 5) to combinemultiple embed-
dings to create a comprehensive and accurate representation of an individual.
This chapter details the process ofmerging embeddings to form templates that
represent a person effectively.

Having established a robust template, the thesis then explores “The speed of
sight: Optimizing face detection for embedded systems” (Chapter 6), investi-
gating the implementation of an efficient pipeline on embedded systems. This
chapter covers integrating and optimizing the template generation process on
hardware with limited resources, ensuring its practical applicability.

Next, “BiometricDomainSpecific SensorLanguage (BioDSSL)” (Chapter 7) in-
troduces an application framework that allows for the specification and man-
agement of different biometric modalities. This chapter discusses the design
and implementation of BioDSSL, which enhances the flexibility and efficiency
of integrating multiple sensors andmodalities.

Finally, all the components developed in the previous chapters are integrated
into a prototype. In Chapter 8 “When Theory Hits Reality: Living lab prototype
and Digidow integration”), we evaluate the prototype in real-world scenarios
to assess its performance, scalability, and potential for practical deployment.

The last Chapter, “Conclusion and outlook”, summarizes the essential find-
ings and contributions of the research. It discusses potential future directions
and broader implications for the field of biometric authentication and privacy-
preserving technologies.

1 Introduction 8

Real-world
(Chapter 8)

Application
(Chapter 7)

Sensor
(Chapter 6)

Person
representation

(Chapter 5)

Embedding

Parts of an
embedding
(Chapter 3)

Efficiency
(Chapter 4)

Figure 1.1: This image illustrates theprogressive layers ofmy research, starting
with foundational improvements in embeddings, followed by cre-
ating a comprehensive single-person representation through inte-
grating multiple embeddings. The next layer represents the devel-
opment of a sensor based on this representation. Subsequently, this
sensor is integrated into a practical application, andfinally, the out-
ermost layer demonstrates the application’s real-world impact and
effectiveness. Each layer builds upon the previous, symbolizing the
cumulative advancement of knowledge and technology throughout
the thesis.

Chapter 2

Background

In this chapter, we provide an overview of the context and prior work relevant
to this thesis. We beginwith a review the various components andmethods in-
volved in biometric authentication (Section 2.1). Finally, we introduce and de-
tail the datasets utilized in this thesis (Section 2.2).

2.1 Decentral biometric authentication

Decentralized biometric authentication systems offer substantial potential for
enhancing security and privacy. This chapter examines the shift from central-
ized to decentralized architectures in biometric systems.

We review centralized biometric systems, drawing on existing research to out-
line their key methodologies and inherent challenges. This review sets the
stage for understanding the motivations behind moving toward decentralized
systems. These motivations include the need for enhanced privacy, reducing
the risks of large-scale data breaches, and empowering users with control over
their biometric information.

We briefly overview various biometric modalities, directing readers to surveys
on these topics, but our primary emphasis is on how decentralization impacts
thedesignand functionality of biometric systems.Weexplore theparts of these
systems, from hardware to algorithms, and discuss how they integrate with
broader technologies like internet of things andmobile devices.

The unique security and privacy challenges of decentralized systems and
strategies for managing these issues are also examined.

The integration of biometric authentication into modern security frameworks
marks a notable evolution in identity verification and access control. The ra-
tionale for adopting biometric methods over traditional authenticationmech-
anisms, such as PINs, passwords, or smart cards, is underpinned by a combi-
nation of convenience, enhanced security, and user-centric considerations:

Convenience and user experience: Traditional authentication methods can
be cumbersome for users, such as remembering (hopefully complex) pass-
words or carrying physical tokens like smart cards or FIDO keys. Biometric
authentication, leveraging inherent traits like fingerprints or facial recog-
nition, offers a more seamless experience. However, there is a degree of
userhesitancy towardbiometrics, oftendue toprivacy concerns [6].Despite

9

2 Background 10

this, the approach simplifies the process by mitigating issues like forgot-
ten passwords or lost tokens, provided that robust data protection mea-
sures and clear privacy policies as well as alternative recovery procedures
and options for users without these biometrics are in place to address these
apprehensions.

Enhanced security: Biometric authentication can provide a higher security
level than traditional methods. Passwords and PINs, which can be shared,
guessed, or stolen, represent a weaker link in security chains. The intrinsic
link between the individual and their biometric traits theoretically ensures
that only authorized persons gain access, minimizing the risks associated
with compromised credentials. However, it is important to recognize that
ensuringmight be too strong a term, as false positives, albeit uncommon,
can occur in biometric systems.

Non-transferability and accountability: Unlike passwords or smart cards,
biometric traits are inherently non-transferable. This characteristic en-
sures that access rights cannot be easily transferred or shared, lead-
ing to greater accountability in transactions and interactions. The non-
transferability of biometrics instills a higher degree of trust in the authen-
tication process, which is particularly crucial in sensitive applications.

However, while the primary motivation for implementing biometric authen-
tication systems is to enhance security and convenience for authenticated in-
dividuals, these systems are often not primarily designed with the technical
safeguards necessary to reduce the potential for surveillance or invasivemon-
itoring. These concerns stem from the inherent design of such systems, which
often prioritize security and convenience without sufficient emphasis on pri-
vacy protection. The ethical implementation and use of biometric authenti-
cation must, therefore, be underpinned by stringent privacy and data protec-
tion standards. This necessity highlights the importance of exploring alterna-
tive system architectures, including technical solutions beyond traditional le-
gal safeguards, to ensure the technology aligns with user privacy concerns and
fundamental rights. Exploring these alternative architectures and their impli-
cations for privacy and data control will be further elaborated in Section 2.1.

To summarize, the shift toward biometric authentication is driven by its ability
to offer amore secure, convenient, and user-friendly alternative to traditional
methods. This transition, however, must be navigated with careful consider-
ation of ethical implications and privacy concerns, particularly when personal
and sensitive biometric data is involved.

Motivation for decentral architectures

The pervasive adoption of biometric authentication technologies across vari-
ous sectors underscores the necessity to critically evaluate the underlying data
managementmodels, especially the predominant centralized systems. Despite
their operational efficiencies, centralizedmodels are riddledwith inherentvul-
nerabilities that significantly compromise user privacy and data security.

2 Background 11

Centralized biometric systems, as implemented in countries like China [121],
India [212], Russia [140], and as proposed in the European Union [58], con-
solidate biometric data frommillions, sometimes billions, of individuals into a
single, centralized database. This aggregation of sensitive data introduces sev-
eral downsides:

Lack of user control: In centralized systems, users often have limited con-
trol over their data post-collection, leading to significant privacy concerns.
However, not all systems inherently lack user control. For instance, Aus-
tria’s ELGA system1 allows participants to view their health records, check
who accessed their data and when, and modify legal access permissions.
Despite this, users must still rely on the system’s integrity and compliance
and ultimately trust the operator to respect these settings as they cannot
independently verify compliance.

Heightened vulnerability to data breaches: Centralized repositories of bio-
metric data are lucrative attack targets. The consolidated nature of these
systems means that a successful breach can compromise an extraordinar-
ily large volume of sensitive data. The risk to centralized systems is far
from hypothetical; numerous incidents have highlighted their vulnerabil-
ity to a range of attacks. High-profile data breaches have spanned mul-
tiple sectors and companies, impacting not only mainstream technology
firms such as Google2, Microsoft3, Facebook4, Uber5, and Twitter/X6, but
also entities specializing in security, like Lastpass7. Furthermore, orga-
nizations that handle highly sensitive personal data, such as 23andme8

and Ancestry9, have been compromised. Additionally, government sys-
tems in countries including Indonesia10, the US11, and the UK12 have also
been breached, underscoring the pervasive nature of this issue. Further-
more, the Aadhaar database, containing biometric and identity informa-
tion on over 1.1 billion Indian citizens, experienced a significant breach
that exposed names, unique identity numbers, and bank details13. More
known data breaches are visualized e.g. at https://informationisbeautiful.
net/visualizations/worlds-biggest-data-breaches-hacks/ and https://en.
wikipedia.org/wiki/List_of_data_breaches.

1https://www.elga.gv.at/
2https://www.theverge.com/2018/12/10/18134541/google-plus-privacy-api-data-leak-
developers

3https://www.forbes.com/sites/daveywinder/2020/01/22/microsoft-security-shocker-as-
250-million-customer-records-exposed-online

4https://www.businessinsider.com/stolen-data-of-533-million-facebook-users-leaked-
online-2021-4

5https://restoreprivacy.com/uber-data-leak-breach-third-party-vendor-hacked/
6https://firewalltimes.com/twitter-data-breach-timeline/
7https://techcrunch.com/2022/12/14/parsing-lastpass-august-data-breach-notice/
8https://arstechnica.com/tech-policy/2023/12/hackers-stole-ancestry-data-of-6-9-million-
users-23andme-finally-confirmed/

9https://arstechnica.com/tech-policy/2023/12/hackers-stole-ancestry-data-of-6-9-million-
users-23andme-finally-confirmed/

10https://kr-asia.com/shoddy-data-protection-in-indonesia-threatens-personal-security-
of-citizens

11https://www.nytimes.com/2016/02/09/us/hackers-access-employee-records-at-justice-
and-homeland-security-depts.html

12https://www.thecricketer.com/Topics/grassroots/ecb_issue_warning_to_users_of_online_
coaching_platform_following_data_breach.html

13https://www.zdnet.com/article/another-data-leak-hits-india-aadhaar-biometric-database/

https://informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/
https://informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/
https://en.wikipedia.org/wiki/List_of_data_breaches
https://en.wikipedia.org/wiki/List_of_data_breaches
https://www.elga.gv.at/
https://www.theverge.com/2018/12/10/18134541/google-plus-privacy-api-data-leak-developers
https://www.theverge.com/2018/12/10/18134541/google-plus-privacy-api-data-leak-developers
https://www.forbes.com/sites/daveywinder/2020/01/22/microsoft-security-shocker-as-250-million-customer-records-exposed-online
https://www.forbes.com/sites/daveywinder/2020/01/22/microsoft-security-shocker-as-250-million-customer-records-exposed-online
https://www.businessinsider.com/stolen-data-of-533-million-facebook-users-leaked-online-2021-4
https://www.businessinsider.com/stolen-data-of-533-million-facebook-users-leaked-online-2021-4
https://restoreprivacy.com/uber-data-leak-breach-third-party-vendor-hacked/
https://firewalltimes.com/twitter-data-breach-timeline/
https://techcrunch.com/2022/12/14/parsing-lastpass-august-data-breach-notice/
https://arstechnica.com/tech-policy/2023/12/hackers-stole-ancestry-data-of-6-9-million-users-23andme-finally-confirmed/
https://arstechnica.com/tech-policy/2023/12/hackers-stole-ancestry-data-of-6-9-million-users-23andme-finally-confirmed/
https://arstechnica.com/tech-policy/2023/12/hackers-stole-ancestry-data-of-6-9-million-users-23andme-finally-confirmed/
https://arstechnica.com/tech-policy/2023/12/hackers-stole-ancestry-data-of-6-9-million-users-23andme-finally-confirmed/
https://kr-asia.com/shoddy-data-protection-in-indonesia-threatens-personal-security-of-citizens
https://kr-asia.com/shoddy-data-protection-in-indonesia-threatens-personal-security-of-citizens
https://www.nytimes.com/2016/02/09/us/hackers-access-employee-records-at-justice-and-homeland-security-depts.html
https://www.nytimes.com/2016/02/09/us/hackers-access-employee-records-at-justice-and-homeland-security-depts.html
https://www.thecricketer.com/Topics/grassroots/ecb_issue_warning_to_users_of_online_coaching_platform_following_data_breach.html
https://www.thecricketer.com/Topics/grassroots/ecb_issue_warning_to_users_of_online_coaching_platform_following_data_breach.html
https://www.zdnet.com/article/another-data-leak-hits-india-aadhaar-biometric-database/

2 Background 12

Surveillance and privacy intrusions: Centralization of biometric data lends
itself to potential abuse for surveillance and other privacy-invasive prac-
tices. The concentration of data in a single entity’s hands increases the risk
of unauthorized access andmisuse, particularly by state actors or rogue el-
ements within organizations.

Systemic and operational risks: Centralized systems, due to their scale
and complexity, are prone to operational risks such as system failures,
downtime, or bottlenecks. The failure of a centralized system can have
widespread implications, affecting large numbers of users simultaneously.

In contrast, a decentralized approach to biometric authentication addresses
these concerns bydispersingdata acrossmultiple nodes. Thismodel inherently
dilutes thevalueof any singlepoint of attack, thereby reducing the incentive for
large-scale breaches. Decentralization also enhances user privacy and control,
as biometric data is not wholly reliant on a single entity’s policies or security
measures. It supports a more democratic and user-centric model of data gov-
ernance, where users have a greater say and visibility over their data.

However, the transition to decentralization is accompanied by its own set of
challenges. Decentralized systems are inherently complex, requiring robust
coordination and security protocols to ensure data integrity and system reli-
ability. The balance between enhanced privacy and security on one side and in-
creased system complexity on the other is a central consideration in the devel-
opment of decentralized biometric authentication systems. Additionally, the
scattered nature of decentralized systems could result in reduced availability.

To summarize, while centralized biometric authentication systems present
operational efficiencies, their significant drawbacks in terms of data secu-
rity, privacy risks, user control, and systemic vulnerabilities motivate the ex-
ploration of decentralized models. These models promise enhanced security
and privacy but require careful design to manage their inherent complexi-
ties. Therefore, the integration of biometrics with decentralized platforms is
emerging as a new frontier, aiming to address privacy and security concerns in
digital identity management [132].

2.1.1 Definitions

This subsection aims to clarify the terms used in this thesis.

Authentication Verification Identification

Figure 2.1: Visualization of differences between authentication, verification,
and identification.

2 Background 13

Biometric authentication, verification, and identification (Fig. 2.2)u Biometric Authentication: A broad term that involves using unique bi-
ological characteristics to verify an individual’s identity. This process
typically compares biometric data, such as fingerprints or facial fea-
tures, against a stored profile to ensure that access is granted only to
authorized users.u Biometric Verification:Also known as 1:1 comparison, biometric verifi-
cation involves comparing an individual’s biometric data against a spe-
cific template to confirm their claimed identity. This method ensures
that individuals are who they claim to be by matching their biometric
traits, such as fingerprints or facial patterns, against a previously en-
rolled template.u Biometric Identification: This process involves recognizing individu-
als based on their unique physical or behavioral characteristics through
a one-to-many (1:N) comparison. It scans a database to find a match
for the presented biometric data, identifying an individual amongmany
without any prior claim of identity.

Decentralized Distributed

Figure 2.2: Illustrationhighlighting thekeydistinctionsbetweendecentralized
and distributed systems.

Decentralized and distributed systemsu Decentralized: In a decentralized system, control is distributed among
multiple entities or nodes, with no central authority. This structure
enhances resilience and reduces single points of failure as decision-
making and operations are spread across the network.u Distributed: A distributed system consists of multiple parts located
on different networked computers that communicate and coordinate
their actions by passing messages to achieve a common goal. Despite
the physical distribution of resources, these systems are typically con-
trolled by a single logical entity, ensuring coherent operation andman-
agement while improving scalability and fault tolerance.

2 Background 14

2.1.2 Centralized biometric authentication

While the explorationof emergent decentralized biometric authentication sys-
tems is in its infancy, a substantial corpus of research exists centered on tradi-
tional centralized biometric authentication systems. This existing body of lit-
erature offers significant insights into the design and implementation of bio-
metric systems, insights that remain relevant to thedevelopment of decentral-
ized counterparts despite their architectural divergence.

1. Surveys on biometricmodalities: The focus is on specifics aboutmodalities.

Rui et al. [173]firstdefines requirements (accuracy, efficiency,usability,
security, and privacy) and then evaluates various modalities based on
them.

Karimian et al. [104] focused on ECG and iris signals.

Lien et al. [118] focus on details about manymodalities.

2. Central system architecture proposals: The proposed architectures assume
a single logical entity.

Karimianet al. [104]discuss the (hardware) setupof abiometric system,
where all components are inside a single logical component (a mixture
between our proposed 3 components).

3. Focus on specific challenges

Carmel et al. [28] focuses on identity theft prevention.

Sundararajan et al. [203] and Basco et al. [19] focuses on wearable
modalities. The former highlights the differences in modality charac-
teristics, system performance, and security considerations. The latter
focuses on the unique challenges and computational considerations in-
herent in wearable biometrics, highlighting the differences between
traditional systems in sensor constraints, data processing, and authen-
ticationmechanisms.

Blanco-Gonzalo et al. [18] focuses on theusability of biometric systems,
which impacts system efficacy and user acceptance.

Wong-In et al. [225] focuses on applying biometric verification on ed-
ucational examiners.

Song et al. [196] focuses on feature-level fusion of facial and acoustic
features.

In this chapter, we focus on the complexities of emergent decentralized bio-
metric authentication systems as a cohesive network of intercommunicating
components. This perspective is important for several reasons:

1. Comprehensive coverage: Unlike previous surveys that focus on the
specifics of biometric modalities or the architectures of centralized sys-
tems, in this chapter, we cast a wider net, acknowledging the intricate web
of interactions within decentralized systems.

2 Background 15

2. Decentralization and system components: In this chapter, we have an ex-
plicit focus on the structural decentralization of biometric systems. By de-
composing the system into distinct but interconnected components, this
chapter serves as a guide for building decentralized architectures.

3. Strategic emphasis on architecture over modality: While recognizing the
importance of modality-specific challenges and advances, this chapter in-
tentionally shifts the focus toward the overarching architecture of decen-
tralized systems. It treats modalities as integral yet subservient elements
within a broader system architecture, thus offering an innovative perspec-
tive that prioritizes systemic coherence overmodality-centric innovations.
This approach does not diminish the value of modality research; instead,
it contextualizes it within a larger framework, where the synergy between
components and their communication protocols becomes a critical area of
study.

In doing so, this chapter addresses a gap in the literature by emphasizing the
“system of systems” approach to decentralized biometric authentication. This
focus illuminates the unique challenges and opportunities presented by de-
centralized architectures—challenges that are often obscured when the lens
is narrowly focused on individual components or centralized frameworks. By
drawing attention to the dynamics of system-wide communication and inte-
gration, this work aims to pave the way for more resilient, efficient, and user-
centric biometric authentication systems. Moreover, this chapter hopes to be
a valuable resource for researchers and practitioners alike by selectively refer-
ring to specialized surveys onmodality specifics and system components.

2.1.3 Biometric authentication overview

The components of biometric systems are shown in Figure 2.3. This figure aims
to give a clear overview of all the possible components, showing the structure
and how different parts of biometric systems relate to each other. Some parts,
like the validity check and pre-selection, can be optional. Also, it is possible to
do some processes concurrently, such as running the validity check and pre-
processing together. This approach helps to understand the complexity and
flexibility of biometric systems’ setup and operation.

In centralized systems, these components are typically managed and con-
trolled by a single entity, such as a specific company or governmental body.
This entity typically operates its own infrastructure, encompassing e.g. fa-
cial recognition cameras, a database of employee or citizen information, and
a matching system, all consolidated on a single logical unit of hardware. This
integrated approach negates the necessity for compartmentalizing biometric
systems, maintaining simplicity by centralizing everything on one platform.

Conversely, decentralized systems scatter these elements across various enti-
ties or locations, resulting in amore intricate system architecture. Such a con-
figuration underlines the potential advantage of organizing these components
into self-sufficient operational clusters. These clusters are capable of func-
tioning independently andmay extend beyond the boundaries of a singular ad-
ministrative domain.

2 Background 16

 Matcher

 Sensor

Data
acquisition

Segmentation
/ detection

Validity
check

Pre-
processing

Feature
extraction

Comparison

Biometric
templates of
authorized

users

enough
support

Aggregator

Pre-
selection

(update template)

Action

1

1 Features and metadata (confidence, (data) quality,
intent, position (e.g. door), timestamp, ...)

2

Current reading supports template <X> with <Y>
Score fusion: Y e.g. 93%
Rank fusion: Y e.g. 2nd rank
...

2

Figure 2.3: An overview of the components within a biometric system, illus-
trating the interaction and flow between the Sensor, Matcher, and
Aggregator components. The system starts with data acquisition
fromasensor, followedby segmentation, detection, and feature ex-
traction. TheMatcher compares extracted features with stored bio-
metric templates, with potential pre-selection and validity checks.
The Aggregator compiles the results to decide on the required ac-
tion, highlighting the modularity and flexibility inherent in both
centralized and decentralized biometric systems.

The key components of such biometric systems include Sensor, Matcher, and
Aggregator. We divided the architecture into these components because it en-
ables specialization and scalability within each phase of the authentication
process, ensuring both flexibility and efficiency in handling diverse biometric
inputs and authentication scenarios.

Split between Sensor andMatcher: The rationale for separating the Sensor
from the Matcher is fundamentally about enhancing security and opera-
tional flexibility in decentralized systems. The comparison of two features
necessitates access to both the current live embedding (obtained by the
sensor) and the stored template (in thematcher).However, indecentralized
systems, the database containing the enrolled users’ templatemight not be
centrally located or directly accessible to the sensor. This is often a deliber-
ate choice to prevent the leakage of sensitive information to the sensor. By
segregating the Sensor andMatcher, we ensure that live biometric data and
stored biometric templates remain isolated, reducing the risk of exposing
personally identifiable information to vulnerabilities inherent in less se-
cure environments. This separation allows for a safer handling of biomet-
ric data. The sensor focuses on capturing and preprocessing data, while the
matcher securely performs comparisons without direct access to live data.

Split between Matcher and Aggregator: The division between the Matcher
and the Aggregator is driven by the need for a customizable and multi-
modal authentication framework. TheMatcher’s role is to compare the in-

2 Background 17

coming biometric features against a database of authorized users’ tem-
plates and generate a support level for template matches. The Aggrega-
tor then takes this support information and decides whether it meets the
threshold for a particular action. This separation enables an entity to spec-
ify the exact level of authentication support required for different actions,
enhancing security measures. For instance, more sensitive actions can be
configured to require higher levels of support or authentication frommul-
tiple biometric modalities. This multi-modal approach, facilitated by the
Aggregator, significantly enhances security by requiringmultiple indepen-
dent biometric verifications to agree before granting access or performing
an action. Additionally, this structure allows for easier integration of future
biometric technologies and modalities, as they can be added to the system
with minimal changes to the existing infrastructure.

In summary, the separation into Sensor,Matcher, andAggregator components
is a strategic architecture choice that enhances the biometric system’s secu-
rity, flexibility, and scalability. It allows for the specialized handling of sensi-
tive biometric data, customizable authentication thresholds, and the incorpo-
ration ofmulti-modal biometric inputs, thereby providing a robust framework
for secure and efficient biometric authentication. The subsequent subsections
will focus on each of these components inmore detail, exploring the technolo-
gies, methodologies, and security measures underpinning this biometric au-
thentication approach.

Historical perspective and evolution of biometric technologies

Early Beginnings: The historical roots of biometrics can be traced back to an-
cient civilizations, where physical characteristics like fingerprints were used
for identification purposes. However, the formal application of biometrics be-
gan in the late 19th century. Alphonse Bertillon, a French police officer and
biometrics researcher, pioneered the use of anthropometry—systematicmea-
surements of body dimensions—for criminal identification [128].

Fingerprint Era: The early 20th century saw the rise of fingerprint identifica-
tion as a reliable method. This period was marked by the development of sys-
tematic approaches for fingerprint classification andmatching [16, 36].

Technological Advancements: The latter half of the 20th century witnessed
significant technological breakthroughs. Automated fingerprint identification
systems (AFIS) 14 were introduced, revolutionizing howfingerprints were pro-
cessed andmatched. This period also saw the advent of other biometricmodal-
ities such as facial recognition [70], iris scanning [49], and speaker recogni-
tion [190], fueled by advancements in digital imaging and computing power.

14https://en.wikipedia.org/wiki/Automated_fingerprint_identification

https://en.wikipedia.org/wiki/Automated_fingerprint_identification

2 Background 18

Integration and Expansion: The turn of the 21st century marked a phase of
rapid integration and expansion of biometric technologies. In response to the
heightened security concerns following the events of 9/11, biometrics found its
way into various domains, from border control [139] to consumer electronics.
Theadventofmachine learningandartificial intelligence furtherpropelled this
expansion, enhancing the accuracy and efficiency of biometric systems.

CurrentTrendsandFutureOutlook: Today, biometrics technology is part of se-
curity and identification systemsworldwide. The focus has shifted towards de-
velopingmultimodal biometric systems that usemultiple biometric indicators,
increasing reliability and preventing spoofing [73, 97, 112, 174, 184, 226, 246,
247].

2.1.4 Sensor

The sensor interacts with its environment through various means including
RGB [33, 127, 146] / 3D [3] cameras, fingerprint readers [96, 131, 152, 160], in-
frared signals [2, 7, 206, 208], and microphones [21, 38, 114, 122]. Its core ob-
jective is to detect humans in its surroundings, and if someone is detected, fea-
tures should be extracted,which can be used to identify a person. Given the hu-
man body’s diversity in unique identifiers, biometric authentication systems
exploit these through various modalities, each with its distinct set of benefits
and challenges regarding accuracy, security, anduser experience. Understand-
ing the specific requirements of a modality allows for a tailored approach that
optimizes the balance between these factors. This consideration ensures that
the chosen biometric modality aligns with the desired level of security, meets
accuracy expectations, and delivers a seamless user experience. Essential to
this consideration are the following criteria:

Inherent qualities of the modalityu Universality: Every individual should possess this trait [44, 57, 108, 173,
202].u Uniqueness: The trait must be distinct for each individual, ensuring
high accuracy in identification [57, 69, 108, 173, 202].u Permanence: The stability of the trait over time, which affects its relia-
bility [20, 44, 57, 69, 108, 173, 202, 227].

Technical and performance considerationsu Collectability [57, 108, 202, 227]

Ease of Acquisition: How easily the biometric data can be captured
(e.g., ears are visible, not generally obscured by makeup or sun-
glasses, and suitable for cheap sensor technology) [20, 44, 69, 173].

Operational Efficiency: Factors like distance from the sensor and
environmental effects on data capture.u Performance [108]

2 Background 19

Speed: The time required to process the biometric data [44, 57].

Computing Requirements: The computational power needed for
data processing [44].

Verification Precision: The accuracy with which a system can con-
firm the identity of an individual [44, 57].

Socio-technical aspectsu Acceptability: Thedegree towhich individuals arewilling touse thebio-
metric system, influenced by cultural and personal concerns [44, 57,
108, 173, 202].u Circumvention Difficulty: Specific to modalities like ear recognition,
which are difficult to replicate through means like plastic surgery [20,
108, 202].

Many biometric modalities can fulfill these criteria and can be categorized
based on

Physiological or behavioral traits: Physiological traits include physical
characteristics like fingerprints or iris patterns, while behavioral traits en-
compass actions such as typing rhythms or walking gait [20, 205],

Soft or hard biometrics:Hard biometrics involve uniquephysical identifiers
like DNA or retinal scans, whereas soft biometrics use less distinctive fea-
tures like height or hair color [43, 98, 99, 147], and

Human body class: This categorization refers to the particular body parts
used for identification, such as the heart’s ECG patterns or the face [167].

Table 2.1: Biometric Methods and their Characteristics

Method Description Ref. Physiol. /
behavioral

Human
body class

Soft
vs
hard

Visible face
rec

Utilizes unique facial
features for
identification using
RGB sensors

[102] phys. face hard

IR face rec Utilizes unique facial
features for
identification using
infrared sensors

[102] phys. face hard

Iris Identifies individuals
based on unique
patterns in the iris

[102] phys. ocular hard

2 Background 20

Method Description Ref. Physiol. /
behavioral

Human
body class

Soft
vs
hard

Retina Utilizes the unique
patterns of the blood
vessels at the back of
the eye for
identification

[102] phys. ocular hard

Sclera Identifies individuals
based on the unique
patterns of the white
part of the eye

[102] phys. ocular hard

Periocular Uses the region
surrounding the eye
for identification,
including the
eyebrows and skin
texture

[102] phys. ocular hard

Fingerprint Employs the unique
patterns of ridges and
valleys on a person’s
finger

[102] phys. palm and
finger

hard

Palm Uses the distinct lines
and features of the
palm

[102] phys. palm and
finger

hard

Finger vein Identifies individuals
through the vein
patterns in the fingers

[102,
178]

phys. palm and
finger

hard

Ear Involves the
distinctive shape and
structure of the ear

[174] phys. face hard

Blood
vessel
dynamics

Focuses on the unique
patterns of blood
vessels

[174] beh. vascular hard

Photo-
plethysmo-
graph

Measures volumetric
changes in blood flow,
possible with a
flashlight and camera
or smartwatches, and
is an emerging method

[155] phys. vascular hard

Dental Identifies individuals
based on the unique
structure and
alignment of teeth

[29] phys. oral hard

2 Background 21

Method Description Ref. Physiol. /
behavioral

Human
body class

Soft
vs
hard

Gait Identifies individuals
by their walking
patterns

[187,
218]

beh. mainly
lower
limbs

hard

Eye
movement

Tracks unique eye
movement patterns
such as saccades and
fixations

[102] beh. ocular hard

ECG Uses the unique
electrical activity of
the heart

[102,
118,
214]

beh. Heart:
electro-
physio-
logical

hard

ICG Uses IR to recognice
vascular anatomy

[102] phys. Heart:
electro-
physio-
logical

hard

PCG Identifies individuals
based on
phonocardiographic
patterns, analyzing
the heart’s acoustic
signals

[102] phys. Heart:
acoustic

hard

Echocardi-
ography

Uses ultrasound
imaging to analyze the
heart’s structure and
function for
identification

[102] phys. Heart:
structural

hard

SCG Utilizes
seismocardiographic
signals to analyze the
mechanical activity of
the heart

[102] phys. Heart:
mechanical

hard

BCG Analyzes the
ballistocardiographic
signals representing
the body’s response to
the ejection of blood
by the heart

[102] phys. Heart:
mechanical

hard

CM Identifies individuals
using
cardiomechanical
patterns, analyzing
the movement of the
heart

[102] phys. Heart:
mechanical

hard

2 Background 22

Method Description Ref. Physiol. /
behavioral

Human
body class

Soft
vs
hard

PPG Uses photoplethys-
mography to measure
blood volume changes
in the microvascular
bed for identification

[102,
118]

phys. vascular hard

Voice Relies on vocal
characteristics for
identification

[118] beh. vocal hard

Hand
gestures

Employs distinct hand
movements and
gestures

[66,
202]

beh. upper
limbs

hard

Signature Identifies individuals
based on the unique
style and patterns of
their handwriting

[118] beh. upper
limbs

hard

Keystroke
dynamics

Analyzes the rhythm
and speed of a
person’s typing
patterns for
identification

[118] beh. upper
limbs

hard

Breath Unique characteristics
of breathing patterns,
based on audio or
motion

[118] beh. respiratory hard

Finger and
mouse
move-
ments

Identifies individuals
based on the unique
characteristics of their
finger andmouse
movements

[24,
239]

beh. upper
limbs

hard

Skull
conduct

Uses the unique way
sound waves
propagate through a
person’s skull for
identification

[102] beh. brain hard

EEG Identifies individuals
based on the unique
patterns of electrical
activity in their brain

[102] beh. brain hard

Skin color Identifies individuals
based on their unique
skin color or tone

[161] phys. skin soft

2 Background 23

Method Description Ref. Physiol. /
behavioral

Human
body class

Soft
vs
hard

Clothing
color

Identifies individuals
based on the color of
their clothing, often
used as a
supplementary feature

[161] beh. external
appearance

soft

The discussion leads to the question: What constitutes features in this con-
text? State-of-the-art techniques for feature extraction involve generating
embeddings—numerical vectors that encapsulate an entity’s distinctive at-
tributes. Often generated through neural networks, these vectors are designed
to maximize inter-class variation and minimize intra-class variation, utiliz-
ing a predetermined distance metric. This approach contrasts with traditional
methods like fingerprint recognition, which comparesminutiae points, show-
casing the breadth of methodologies in feature extraction within biometric
systems.

In addition to extracting features, the sensor is capable of detecting not only
the presence of individuals (along with certain features for identification pur-
poses) but also additionalmetadata. This metadata varies significantly based
on the application and depends on what action should be executed. Examples
of commonly collected metadata include:

Timestamp: The exact time when the data was captured or the event oc-
curred.

Intent: The sensor can differentiate if an individual intends to perform a
specific action, such as opening a door, or if they are engaging in everyday
activities like enjoyinga cupof coffeeor conversingwitha colleaguenearby.

Positional information: Where the individual is located relative to the sen-
sor or an object of interest.

Confidence: The sensor’s self-assessed reliability in its readings,which can
include quality metrics of the input data, such as evaluations of the data’s
integrity and usefulness for processing.

Further metadata examples to consider include the individual’s velocity, the
duration of their presence within the sensor’s range, or environmental condi-
tions like lighting and temperature, which could influence the sensor’s perfor-
mance or the interpretation of its readings.

Data acquisition

This initial step involves capturing rawbiometric data throughvarious special-
ized devices:

RGB Cameras: Face recognition [137], iris recognition, gait recognition,
hand [157] (-gesture [66, 138])

2 Background 24

Fingerprint Scanner/Reader: Fingerprint recognition [37, 77, 131, 150, 204,
237]

Microphone: Voice/speaker recognition [170, 172, 201, 226, 234]

Photoacoustic tomography [240]: combination of ultrasound and optical
measurements

Accelerometer [202]: gait and gestures recognition

Wearable Fitness Trackers and Smartwatches [46, 56, 129, 207, 216]

Thermal Imaging Cameras Heat signature recognition: face [8, 12, 180,
200], fingerprint [101], hand [41]

Segmentation / Detection

After the initial data acquisition, this phase involves isolating the biometric
features of interest from the raw input. The techniques and challenges involved
are specific to the biometric modality being processed. To avoid repetition, we
will focus on discussing specific techniques for a few popular modalities listed
in the table. This approach does not restrict our findings, as similar principles
and techniques apply to the othermodalities not covered in detail. Examples of
segmentation and detection across various modalities include:

Face recognition: Algorithms aim to identify and isolate the face from its
surroundingsusing facedetection, accounting for factors likediverse back-
grounds, lighting variations, and the presence of multiple faces [74, 110,
238].

Fingerprint recognition: The process distinguishes the fingerprint from
the background, which is essential for accurate ridge and valley identifi-
cation [26, 32, 59, 177, 219].

Iris recognition: Detects the iris within an eye image, segmenting it from
thepupil, sclera, and eyelids, despite the complexity of the eye structure [11,
116, 220, 222].

Gait recognition: Identifies and segments the sequence of human move-
ment or posture that makes up an individual’s gait, which is challenging
due to environmental variations and potential obstructions [55, 143, 228].

Hand gesture recognition: Focuses on detecting and segmenting hand po-
sitions andmovements from the background, recognizing hand shapes and
finger configurations for gesture interpretation [25, 103, 144, 211, 249].

Voice/Speaker recognition: Inaudiomodalities, it involves isolatingspeech
from background noise and detecting the start and end of spoken phrases,
crucial for effective voice recognition [10, 22, 23, 135].

The segmentation and detection step ensures that only pertinent biometric
data is forwarded through the authentication system.

2 Background 25

Validity / Liveness check

The validity check is designed to assess the authenticity of the biometric data,
ensuring that it represents a live and genuine subject rather than an artificial
or fraudulent attempt to mimic biometric characteristics. This stage employs
sophisticated methods to distinguish between legitimate biometric samples
and potential spoofs, artifacts, or noise, thus bolstering the system’s security
against various forms of attacks. Specific examples of validity checks across
different modalities include:

Face Recognition: Implements liveness detection algorithms to differen-
tiate between a real human face and a photograph, video, mask, or other
face replicas. Techniques such as analyzing texture patterns, skin reflec-
tion, eye blinking, or head movements are used to confirm the presence of
a live subject [67, 105, 166, 192].

Fingerprint Recognition: Employs algorithms to detect the presence of a
livefingerby examining sweatpores, skin elasticity, or pulse, thusprevent-
ing spoofing with lifted prints or fake fingers [141, 148, 235, 236].

Iris Recognition: Utilizes pupil dilation response or spontaneous iris tex-
turepatterns to ensure the iris image isnot aphotoor a synthetic image [40,
47, 93, 156, 229].

Voice Recognition: Applies analysis of speech pattern consistency, back-
ground noise levels, and temporal voice characteristics to distinguish be-
tween live human speech and recorded or synthesized voice attacks [176,
223, 242, 243, 244].

These methods are integral to maintaining the integrity of the biometric au-
thentication process, effectively mitigating risks associated with spoofing and
ensuring that only live, genuine biometric data is processed. This layer of secu-
rity is crucial for the overall reliability and trustworthiness of the decentralized
biometric authentication system.

Pre-processing

Following segmentation/detection, the pre-processing stage aims to standard-
ize and enhance the quality of biometric data, facilitating more accurate fea-
ture extraction. This phase employs various techniques tailored to the specific
requirements of each biometric modality:

Face Recognition: Image quality enhancements such as grayscale conver-
sion, contrast adjustment, and histogram equalization are applied to im-
prove facial feature visibility. Additionally, geometric transformationsmay
be used to ensure facial alignment, with eyes positioned on the same level
for consistent feature extraction.

Fingerprint Recognition: The focus is on enhancing the fingerprint image
to accentuate ridge patterns and minimize noise. Techniques such as ridge
enhancementfilters andbinarizationare commonly applied, improving the
clarity of minutiae points crucial for matching algorithms.

2 Background 26

Iris Recognition: Pre-processing includes iris normalization and unwrap-
ping to transform the circular iris pattern into a rectangular form, facil-
itating consistent feature analysis. Image enhancement methods are also
applied to improve the visibility of iris patterns.

Voice Recognition: Audio signals undergo noise reduction and normaliza-
tion processes to mitigate background noise and ensure consistent volume
levels. Feature extraction techniques, such as Mel-Frequency Cepstral Co-
efficients (MFCCs), arepreparedby segmenting thevoice signal into frames
for detailed analysis.

Gait Recognition: Video sequences are processed to stabilize the motion
and isolate the silhouette of the subject. Normalization techniques adjust
for variations in speed and stride, ensuring consistent gait pattern analy-
sis.

This preparatory stage is crucial for ensuring the biometric data is in an opti-
mal state for the feature extraction phase, directly impacting the accuracy and
reliability of the biometric authentication system.

Feature extraction

In the feature extraction stage, the essence of biometric data is distilled into a
compact, yet informative representation suitable for comparison and authen-
tication. This phase leverages advanced algorithms and techniques to iden-
tify andquantify uniquebiometric characteristics fromthepre-processeddata.
The process varies significantly across different biometricmodalities, as illus-
trated below:

Face Recognition: Utilizes techniques such as geometric feature extrac-
tion, where key landmarks on the face (e.g. distances between eyes, nose
width, chin shape) aremeasured, or appearance-basedmethods,where fa-
cial characteristics are captured more holistically, often using deep learn-
ingmodels like Convolutional Neural Networks (CNNs) to generate a facial
signature.

Fingerprint Recognition: Focuses on minutiae extraction, identifying
unique points on the fingerprint such as ridge bifurcations and endings.
Advanced image processing techniques are applied to enhance the finger-
print image, making the minutiae more discernible for accurate template
generation.

Iris Recognition: Employs pattern recognition algorithms to analyze the
unique patterns in the iris. Features such as trabecular meshwork, rings,
furrows, and freckles are encoded into a compact, digital form, often uti-
lizing Gabor filters, or wavelet transforms for texture analysis.

Voice Recognition: Extracts features from voice samples based on the
speech signal’s frequency, amplitude, and temporal characteristics. Tech-
niques such asMel-Frequency Cepstral Coefficients (MFCCs) or Deep Neu-
ral Networks are used to capture the unique aspects of an individual’s voice
pattern.

2 Background 27

Gait Recognition:Analyzes the sequence ofmovements or poses constitut-
ing an individual’s walk. Feature extraction in gait recognitionmay involve
analyzing spatial-temporal patterns or the using motion capture technol-
ogy to identify unique gait characteristics.

In all modalities, feature extraction aims to transform raw or pre-processed
biometric data into a feature set that accurately represents the individual’s
unique biometric characteristics. These features are then encoded into tem-
plates, which are stored or compared against existing templates to verify iden-
tity or authenticate users. This stage is critical for the effectiveness and relia-
bility of the biometric authentication process. It requires a careful balance be-
tween capturing sufficient detail for accurate identification and maintaining
efficiency for real-time processing.

2.1.5 Matcher

TheMatcher componentplays a crucial role indecentralizedbiometric authen-
tication systems. Its primary function is to analyze and compare biometric fea-
tures against stored templates todetermine the likelihoodof amatch.Thispro-
cess involves generating a support value, quantifying the degree to which the
presented biometric input aligns with a specific template.

Depending on the system’s design and privacy requirements, the Matcher’s
operations can be localized within the sensor, offloaded to a third party, ex-
ecuted at the service provider’s end, or distributed among multiple parties
throughmulti-party computation techniques.

Comparison

The comparison phase assesses the similarity between captured biometric fea-
tures and stored templates. This process can be classified into two primary
models:

Closed [155] vs. openset [52]: In a closed set scenario, all potential users are
known and registered within the system. In contrast, an open set context
assumes an unrestricted user base, where individuals might not be previ-
ously enrolled. The distinction significantly influences the matching algo-
rithm’s complexity and the strategies for handling unknown subjects.

Supervised vs. unsupervised: Comparison algorithms may operate under
supervised learning, where the system is trained on labeled data, or unsu-
pervised learning, which does not rely on predefined labels. Choosing these
approaches affects the system’s adaptability and efficiency in recognizing
biometric patterns.

Template adaptability: Depending on the operational context, different
templates may be employed to enhance matching performance and secu-
rity. This flexibility allows the system to adjust to varying environmental
conditions and threat models.

2 Background 28

Pre-select

Before performing an exhaustive search across the entire template database,
theMatcher canapplypre-selectioncriteria tonarrowdownpotentialmatches.
This step enhances system efficiency and reduces computation time through:

Identification: Determining the most likely candidates for a match based
on initial biometric input.

Softbiometrics [191]:Utilizing lessprecise, but still informative, traits such
as height or gender to reduce the search space.

Non-biometric information:Employingauxiliary identifiers likepassports
or ID numbers to further refine the pool of potential matches.

Database

An important component of the Matcher’s functionality is its interaction with
the biometric template database. This includes mechanisms for:

Revocation:Theability to efficiently removeorupdate templateswithin the
database, ensuring the systemremains current and secure against potential
vulnerabilities.

The Matcher ensures accurate, efficient, and secure user authentication by
comparing biometric features against stored templates and employing pre-
selection techniques.

2.1.6 Aggregator

The Aggregator is tasked with synthesizing support values generated by the
Matcher. These values, which may be derived from multiple inputs over time
and from different biometrics, cumulatively inform the decision-making pro-
cess. When the aggregated support exceeds a predefined threshold for a spe-
cific action, the system initiates a predetermined action, such as granting or
denying access. This component’s functionality is crucial for enhancing au-
thentication security, particularly in systems that employmultimodal biomet-
rics, combining traits like fingerprint and palm print through trained neural
networks for improved accuracy [109, 184].

Multimodal biometric systemsofferamore robust solution thanunimodal sys-
tems by integrating multiple biometric indicators. For instance, combining
fingerprint and iris data [213], or face recognition with RFID tags [15], signif-
icantly enhances security and reliability. This integration can occur at various
levels, including sensor [118], feature, score, rank, and decision, each offering
unique advantages and considerations.

Data quality plays an important role in the aggregation process. High-quality
biometric data is essential for reliable authentication, as poor-quality inputs
can increase the false acceptance rate (FAR), potentially allowingunauthorized
access.Tomitigate this risk, theAggregator canpotentially assess thequalityof

2 Background 29

biometric inputs, rejectingor requesting additional data if thequality is belowa
certain threshold [17, 191]. This assessment ismodality-specific,withdifferent
criteria for evaluating the quality of fingerprint [31], iris [48], face [142], and
other biometric data. Advancedmodels can also be explicitly trained for quality
estimation, further enhancing the system’s effectiveness [63].

The Aggregator’s approach varies significantly across applications, influenced
by factors such as the required security level, operational environment, and
user convenience. In some contexts, the system may prioritize one biometric
modality over others due to its reliability or ease of use. Alternatively, in more
secure settings, the system might require a combination of modalities to au-
thenticate an individual [9]. Continuous authentication presents a dynamic al-
ternative, offering ongoing verification rather than a single, one-time check,
thereby enhancing security against spoofing and accommodating intra-class
variations and noisy data [161].

In summary, the Aggregator is fundamental to the effectiveness of biometric
authentication systems, particularly in multimodal contexts. By intelligently
synthesizing support values from various sources and rigorously assessing
data quality, the Aggregator ensures a high level of security and reliability. This
adaptability to different biometric modalities and operational requirements
underscores the complex interplay between technology and application in the
realm of biometric authentication.

2.1.7 Performance evaluationmetrics and datasets

Evaluating the efficacyof biometric systems involves assessingvariousmetrics
that contribute to their overall performance. This subsection focuses on these
metrics and their role in ensuring the robustness and reliability of biometric
systems in diverse applications.

The primary measure of a biometric system’s performance is its accuracy,
which is often expressed through the Equal Error Rate (EER) [24, 173, 202,
239]. EER indicates the point at which the rates of False Acceptances (FAR) and
False Rejections (FRR) converge, offering a balanced metric for system evalu-
ation. Depending on the application’s security requirements, emphasis might
be placed more onminimizing FAR or FRR to adapt to specific security needs.

Efficiency in biometric systems refers to the speed at which the system pro-
cesses an identification or verification request and the system’s operational
demands. Thismetric is crucial for applications requiring rapid response times
without sacrificing accuracy [173]. Scalability is another important measure,
that assesses a system’s capability to handle increasing workloads, such as
more users or more sensors, without performance degradation. This is vital in
large-scale systems where user bases might expand significantly [174].

Securitymetrics assess the system’s ability to protect user data against unau-
thorized access and ensure data integrity. The robustness of a biometric system
against external attacksanddatabreaches is a cornerstoneof its reliability [173,
174]. Usability focuses on the user experience, particularly the ease of interac-
tion with the biometric system and the intuitiveness of its processes. A system
with high usability encourages broader acceptance and user compliance [174].

2 Background 30

Effectiveness evaluates the real-world applicability of a biometric system, en-
suring that it performswellwithin theexpected timeframesunder various con-
ditions. Thismetric is particularly important in scenarioswhere immediate au-
thentication is necessary [174].

In practical applications, achieving a balance among accuracy, efficiency, us-
ability, and security is challenging and often requires trade-offs. The optimal
balance is influenced by the specific demands and constraints of the environ-
ment in which the system is deployed. For example, the needs of a fast-paced
urban subway system differ significantly from those of a high-security border
checkpoint. By carefully considering these metrics, developers and users can
better understand the strengths and limitations of different biometric systems
and select the one that best fits their specific needs.

2.1.8 Security and privacy considerations

In decentralized settings, biometric systems face unique security vulnerabili-
ties and privacy concerns due to their distributed nature. This subsection elab-
orateson these challenges,underlining theneed for rigoroussecuritymeasures
and adherence to ethical guidelines.

Security vulnerabilities in biometric systems

Biometric systems, especially in decentralized architectures, are susceptible
to various security threats, each targeting different system components. The
main vulnerabilities include:

Replay attacks: Where an attacker reuses previously captured biometric
data to gain unauthorized access [193, 194, 195].

Disclosure of biometrics: Unauthorized access leads to sensitive biometric
data exposure.

Impersonationattacks / spoofing:Using fakebiometric traits to imperson-
ate a legitimate user. Examples include:u Liveness attacks on facial recognition systems [191]u Fake fingers in fingerprint systems [173]

Denial of Service (DoS): Overloading the system to prevent legitimate ac-
cess.

Tailgating: An unauthorized person gaining access by following an autho-
rized person.

Replay Attacks: These occur when an attacker captures and reuses previ-
ously recorded biometric data to fraudulently gain unauthorized access to a
system [193, 194, 195]. Unlike liveness attacks, replay attacks involve using
authentic biometric samples that were recorded during a legitimate inter-
action, rather than generating fake biometrics.

2 Background 31

Disclosure of Biometrics: This refers to the unauthorized access and ex-
posure of sensitive biometric data, which can lead to privacy breaches and
further exploitation of the compromised biometric information.

Impersonation Attacks / Spoofing: These attacks involve the use of coun-
terfeit biometric traits to imitate a legitimate user and gain unauthorized
access. Examples include:u Liveness Attacks: Specifically target systems that rely on liveness de-

tection, such as facial recognition, by using techniques like photo,
video, or 3D mask attacks to trick the system into accepting a fake bio-
metric as real [191].u FakeFingers: Infingerprint systems, attackersmaycreate artificialfin-
gerprints usingmaterials like silicone or gel to impersonate a legitimate
user [173].

Denial of Service (DoS): This involves overwhelming a biometric system
with excessive requests or data, thereby preventing legitimate users from
accessing the system and causing service disruption.

Tailgating: An attack method where an unauthorized individual gains ac-
cess to a secured area by closely following an authorized person, exploiting
their access without providing valid credentials themselves.

Privacy concerns and ethical implications of biometric data collection

The collection and use of biometric data raise significant ethical and privacy
concerns, particularly around consent, data minimization, and the potential
for surveillance. In decentralized systems, while data is not centralized, the
dispersion can complicate datamanagement, leading to challenges in ensuring
all nodes comply with privacy laws and ethical standards. Systems must im-
plement strict data governance to prevent misuse and ensure that users have
control over their personal information.

In conclusion, decentralized biometric systems offer benefits over centralized
systems, especially in terms of enhanced privacy and reduced risk ofmass data
breaches, but they require careful consideration of security and privacy tomit-
igate their unique risks.

Summary

This chapter reviewed the transition fromcentralized to decentralized biomet-
ric authentication systems, discussing both the benefits and challenges of de-
centralized approaches. While decentralized systems offer potential improve-
ments in privacy, user control, and reduced risk of large-scale data breaches,
they also introduce complexities that require advanced security measures, ef-
fective data management strategies, and careful coordination. The discussion
also touches on the role ofmulti-modal biometric systems and the integration
of various biometric traits. This chapter sets the groundwork for understand-
ing the necessary considerations in developing resilient, user-centric biomet-
ric authentication systems.

2 Background 32

2.2 Datasets

In this section, we describe the datasets that were used in this PhD thesis. The
selection and application of these datasets provide the foundation for evaluat-
ing the proposed methodologies and algorithms. Each dataset comes with its
unique characteristics, allowing for a comprehensive analysis of face recogni-
tion and detection performance under various conditions.

2.2.1 Celebrities in Frontal-Profile (CFP)

Figure 2.4: Example images of the CFP dataset.

The Celebrities in Frontal-Profile (CFP) [186] dataset consists of images of 500
individuals. Each person has 10 frontal images, making it ideal for studying
variations in facial recognition due to changes in expression and pose adjust-
ments. With this dataset we assess the robustness of face recognition algo-
rithms when dealing with occluded face parts (Chapter 3).

2.2.2 Real-world mask dataset

Figure 2.5: Example images of the real-world mask dataset.

This dataset [224] was compiled to specifically address the challenges posed
by occluded faces, a scenario increasingly common due to the global pandemic
and other factors requiring face coverings. It includes 525 individuals with a
total of 2203 images where faces are masked. The variety and realism of these
images provided a robust testbed for evaluating the impact of occlusions on
face detection and recognition systems (Chapter 3).

2 Background 33

2.2.3 WIDER Face

Figure 2.6: Example images of the WIDER face dataset.

The WIDER Face dataset [233] is a comprehensive collection of 32,203 images
and 393,703 labeled faces, designed to support research in facial recognition
and detection. It encompasses a diverse range of facial variations, including
different scales, occlusions, poses, and expressions, ensuring robust and chal-
lenging evaluation benchmarks. We utilize this dataset to verify the accuracy
of various face detection networks in Section 3.1.1, ensuring a robust and chal-
lenging evaluation benchmark.

2.2.4 Labeled Faces in theWild (LFW)

Figure 2.7: Example images of the LFW dataset.

The Labeled Faces in the Wild (LFW) dataset [94] is a well-known and pub-
licly accessible collection intended for the study and benchmarking of uncon-
strained face recognition. Consisting of 13,233 images representing 5,749 dis-
tinct individuals, this dataset presents a diverse array of conditions relating to
illumination, pose, and expression, thereby creating a challenging yet acces-
sible platform for evaluating facial recognition systems. However, a consider-
able proportion of these images are portrait-like with consistent lighting and
favorable angles. This characteristic significantly contributes to the potential
for achieving near-perfect accuracy levels with certain advanced face recogni-
tion systems, rendering the LFW dataset relatively easy to handle in contrast
to other collectionswithmore constrained conditions. Notably, among the en-
tire set, 6,000 image pairs have been specifically arranged to serve as a robust
validation subset, further underscoring the LFW’s efficacy as a comprehensive
tool in thedevelopment and evaluationof face recognitionmethodologies. This
dataset, together with CPLFW is used in Section 4 for evaluating the effects
of embedding reduction. These two datasets are chosen, because they con-
tain a large amount of real-world, unconstrained images that closely resemble
the diverse scenarios encountered in practical applications of face recognition
technology.

2 Background 34

2.2.5 Cross-Pose Labeled Faces in theWild (CPLFW)

Figure 2.8: Example images of the CPLFW dataset.

The Cross-Pose LFW (CPLFW) dataset [252] provides amore challenging envi-
ronment for testing face verification technologies due to its focus on pose vari-
ations and diverse conditions, including lighting and expressions. Featuring
over 11,652 images of 3,000 individuals, CPLFW offers a rich diversity of non-
ideal scenarios, representing a stark contrast to the considerable proportion of
portrait-like images found in the LFW dataset. This complexity, especially in
pose variation, makes achieving high accuracymore challenging for face veri-
fication models. CPLFW also includes a validation subset of 6,000 image pairs
to facilitate detailed assessments, paralleling the LFW dataset’s structure.

Moreover, the CPLFWdataset highlights the variation of poses,which adds an-
other dimension to the challenges faced by face recognition systems. To sup-
port comprehensive testing, the CPLFW dataset includes a specially curated
validation subset of 6,000 image pairs, mirroring the structure of the LFW
dataset.

2.2.6 CelebFaces Attributes (CelebA)

Figure 2.9: Example images of the CelebA dataset.

The CelebFaces Attributes (CelebA) dataset [125] is a large-scale face attributes
dataset containing 202,599 celebrity images of 10,177 identities, each with 40
attribute labels. This dataset is particularly valuable for various facial analysis
tasks due to its rich diversity in termsof appearance, expressions, andposes, as
well as the inclusion of annotated attributes like age, gender, and facial land-
marks.

CelebA’s extensive annotations enable a wide range of experiments, from face
detectionandalignment toattributepredictionand landmark localization.This
versatility makes it an essential resource for assessing the performance and
robustness of face recognition algorithms under different conditions (Chap-
ter 5).

Chapter 3

Understanding facial features in
biometric authentication

Real-world
(Chapter 8)

Application
(Chapter 7)

Sensor
(Chapter 6)

Person
representation

(Chapter 5)

Embedding

Parts of an
embedding
(Chapter 3)

Efficiency
(Chapter 4)

In the previous chapters, we discussed the significance of biometric sys-
tems, explored the potential impact of decentralization, and analyzed var-
ious datasets. This foundation sets the stage for our in-depth examination
of embeddings—the cornerstone of biometric authentication. Specifically, we
will explore how facial features impact face recognition systems. This exam-
ination will help us understand what information these embeddings contain
and what most affects their performance.

Why focuson facial recognition?Most state-of-the-art biometric systemscre-
ate an embedding because they avoid re-training their models for every indi-
vidual to be recognized. They use the embedding of different modalities in a
very similar way, even using the same distancemetric acrossmodalities. Thus,
in this chapter,wewill focus on faces as one example of awidely used biometric
modality, but we expect other biometric systems to behave similarly. The rea-
son for facial recognition is that it is awidely-used biometric technology due to
its non-intrusive nature and broad applicability. Unlike other systems such as
fingerprint or iris scanning, it doesn’t require direct contact,making it ideal for
security, surveillance, and user authentication. Its versatility spans from un-
locking smartphones to monitoring public spaces recognizing faces in crowds
from a distance. Advances in machine learning and computer vision have en-
hanced its accuracy and reliability, cementing its role in modern biometrics.

35

3 Understanding facial features in biometric authentication 36

Webegin by analyzing the performance of various face-detection and recogni-
tion algorithms, as detailed in Section 3.1. This analysis informs our choice of
themost suitable face detection and recognitionmodel for this thesis. Next, we
evaluate efficiently computable heuristics for enhancing face recognition sys-
tems, as discussed in Section 3.2. Face recognition systems are typically trained
onhigh-quality, portrait-likedatasets, thoughrecentyearshave seenmoredi-
verse training data. In real-world scenarios, faces are often partially covered or
occluded, such as by facemasks, sunglasses, or other coverings. This is partic-
ularly relevant during virus outbreaks or for medical staff wearing protective
gear and raises the question of how these occlusions affect the performance of
state-of-the-art face detection algorithms, a topic we address starting in Sec-
tion 3.3.

Understanding the role of different facial features is essential formaking these
systems more robust and efficient. By examining the contributions of vari-
ous facial parts, we aim to identify which features are most critical for accu-
rate recognition. Additionally, this knowledge can improve current algorithms
but also enhance privacy by allowing individuals to cover specific parts of their
faces to avoid detection by certain algorithms.

3.1 State-of-the-art face pipeline

FoundationThe foundation of this section is the following technical report:

Hofer, Philipp. 2021. Analysis of state-of-the-art off-the-shelve face
recognition pipelines. Technical report. Johannes Kepler University Linz,
Institute of Networks and Security, Christian Doppler Laboratory for Pri-
vate Digital Authentication in the Physical World, (March 2021). https://w
ww.digidow.eu/publications/2021-hofer-tr-analysisfacerecognitionpipe
lines/Hofer_2021_AnalysisFaceRecognitionPipelines.pdf

To advance our research into the behavior of face recognitionmodels, wemust
first determinewhichmodels to use. Face recognition pipelines are continually
evolving, with numerous new publications each year [106, 136, 154, 188, 224].
This section aims to provide an overview of amodern pipeline and recommend
a state-of-the-art approach that balances accuracy and performance, even on
low-endhardware such as the JetsonNano1, or aRaspberry Pi2with aCoral USB
Accelerator3.

State-of-the-art face recognitionpipelines typically involve twoprimary tasks
(c.f. Fig. 3.1):

Face detection: Identifying and locating faces within images.

Face recognition:Mapping detected faces to specific individuals.

1https://developer.nvidia.com/embedded/jetson-nano
2https://www.raspberrypi.com
3https://coral.ai/products/accelerator

https://www.digidow.eu/publications/2021-hofer-tr-analysisfacerecognitionpipelines/Hofer_2021_AnalysisFaceRecognitionPipelines.pdf
https://www.digidow.eu/publications/2021-hofer-tr-analysisfacerecognitionpipelines/Hofer_2021_AnalysisFaceRecognitionPipelines.pdf
https://www.digidow.eu/publications/2021-hofer-tr-analysisfacerecognitionpipelines/Hofer_2021_AnalysisFaceRecognitionPipelines.pdf
https://developer.nvidia.com/embedded/jetson-nano
https://www.raspberrypi.com
https://coral.ai/products/accelerator

3 Understanding facial features in biometric authentication 37

Camera Face detection Face recognition

Sir Secretface

Figure 3.1: Difference between face detection and face recognition.

Todevelop aneffective real-time system, thepipelinemust process a sufficient
number of frames per second (FPS) to ensure smooth and responsive perfor-
mance. Stewart et al. [199] indicate that real-time systems typically need to
process at least 3–5 frames per second to be considered responsive and ef-
fective in dynamic environments. This performance benchmark is crucial for
maintaining a smooth and responsive user experience. Notably, while the cited
study is from2001, itsfindings continue to be relevant for establishingbaseline
requirements in real-time system performance.

3.1.1 Face detection

We analyze three popular state-of-the-art face detection models: Reti-
naface [53],MTCNN [241], and Faceboxes [245].We aim to assess whichmodel
delivers themost accurate and efficient performance for practical applications.
To facilitate a fair and consistent comparison, we utilized theWIDER Easy Face
dataset [233], chosen for its diversity and representativeness of real-world
scenarios. For a comprehensive description of this dataset, please refer to
Section 2.2.3.

The accuracy of the models was evaluated with the following results:

Retinaface: 94.2 %

MTCNN: 91.0 %

Faceboxes: 86.3 %

Subsequently, we assessed the processing speed of each model by timing their
performance on a 1080p image using an Intel Core i5-8265U CPU:

Retinaface: 750ms (1.3 FPS)

MTCNN: 550ms (1.8 FPS)

Faceboxes: 35 ms (28 FPS)

This evaluation reveals a notable trade-off between speed and accuracy among
themodels. FaceBoxes demonstrates superior speed,making it highly efficient
for scenarios where processing speed is critical. However, this speed comes
with a limitation: FaceBoxes performs optimally only on high-quality images
where the face is large and directly facing the camera.

In contrast, both Retinaface and MTCNN not only provide higher accuracy but
also compute five facial landmarks necessary for advanced face recognition
tasks.

3 Understanding facial features in biometric authentication 38

Looking ahead, there are several strategies to enhance model speed without
significantly sacrificing accuracy, which we explore in greater detail in Chap-
ter 6.

Adopt a smaller backbone network: Face detection networks use backbone
networks for extracting features from images. The size of the backbone
network, primarily its depth, significantly affects inference time. Using a
leaner network can reduce processing time, though it might reduce accu-
racy.

Reduce image resolution: Lowering the resolution of images can speed up
processing times, although this often results in lower image quality, po-
tentially undermining the utility of high-resolution cameras.

Selective detection: Running the face detection algorithm only on specific
parts of an image, such as areas with movement or previously detected
faces, can improve efficiency.

Simplified initial detection: Using a basic model to generate initial face
proposals and then applying the comprehensive model only on these
cropped regions can optimize both speed and resource use.

3.1.2 Face recognition

Comparing a face against numerous others efficiently without re-training the
network requires extracting a numerical representation, known as an embed-
ding. Recent publications, such as Arcface [52], SphereFace [123], and Cos-
Face [221], commonly use an embedding size of 512 elementswith 32-bit float-
ing points (in total 16 kB).

We focus on Arcface and FaceNet over other algorithms due to several fac-
tors. Firstly, Arcface has established itself as a state-of-the-art method for
face recognition, known for its high accuracy and robust performance across
diverse datasets. FaceNet, on the other hand, is widely recognized for its effi-
ciency and versatility, particularly in embedding generation and real-time ap-
plications. The combination of these two methods allows us to explore both
cutting-edge accuracy and practical deployment efficiency.

Therefore, we conducted a detailed performance comparison of Arcface and
FaceNet across various hardware platforms, focusing on the speed and effi-
ciencywithwhich they process face embeddings. The results of this evaluation,
presented in Table 3.1, highlight the strengths of each algorithm in different
contexts, providing valuable insights into their practical applications.

Enhancing performance using a GPU, whether on a laptop or an embedded de-
vice such as a JetsonNano, would improve these speedmetrics. However, since
our research focuses on assessing thesemodels’ relative efficiency under simi-
lar conditions, we did not incorporate GPU enhancements into our testing pro-
tocol. This approach remains aligned with our primary objective of evaluating
model performance in a standard computational environment, which is crucial
for applications in less resource-intensive settings.

3 Understanding facial features in biometric authentication 39

Table 3.1: Speed comparison of 2 state-of-the-art face-recognition algo-
rithms.

Arcface FaceNet

Laptop4 0.21 s/ face embedding 0.17 s/ face embedding

Pi 3 3.5 s/ face embedding 3.1 s/ face embedding

Pi 4 2 s/ face embedding 1.5 s/ face embedding

To measure accuracy, we relied on the findings of Firmansyah et al. [65], who
evaluated these algorithms on the Labeled Faces in the Wild (LFW) dataset:

FaceNet: 99.20%

Arcface: 99.41 %

3.1.3 Summary

In this section, we have explored the typical components and performance of
face recognition systems, focusing on both face detection and -recognition.

Face detection:The findings reveal a trade-off between accuracy and speed for
three state-of-the-art face detection models (Retinaface, MTCNN, and Face-
boxes).

Retinaface: Offers the highest accuracy (94.2%) but operates at the slowest
speed (1.3 FPS).

MTCNN: Provides good accuracy (91.0 %) with moderate speed (1.8 FPS).

Faceboxes: Delivers the fastest speed (28 FPS) but with the lowest accuracy
(86.3 %).

The trade-offs highlight the need for tailored solutions based on application
requirements. Enhancements such as using smaller models and targeted de-
tection areas can further optimize performance.

Face recognition: We conducted a comparison between two face recognition
algorithms, Arcface and FaceNet, focusing on their speed and accuracy. Given
that their accuracy is nearly identical, our analysis emphasized processing
speed:

Arcface: Processes face embeddings in 0.21 seconds on a laptop, 3.5 seconds
on a Pi 3, and 2 seconds on a Pi 4.

FaceNet: Processes face embeddings in 0.17 seconds on a laptop, 3.1 seconds
on a Pi 3, and 1.5 seconds on a Pi 4.

These comparisons demonstrate the relative efficiency and effectiveness of the
models, underscoring their suitability for real-time applications even without
GPU acceleration.

3 Understanding facial features in biometric authentication 40

DecisionGiven the high accuracy and reasonable performance balance, Retinaface
and Arcface emerge as the recommended default models for robust face
detection and -recognition tasks and will be used in this thesis.

3.2 Heuristics for successful face pipeline

FoundationThe foundation of this section is the following technical report:

Hofer, Philipp. 2021. Face recognition: Increase accuracy by filtering im-
ages with heuristics. Technical report. Johannes Kepler University Linz,
Institute of Networks and Security, Christian Doppler Laboratory for Pri-
vate Digital Authentication in the Physical World, (July 2021). https://ww
w.digidow.eu/publications/2021-hofer-tr-increasefacerecognitionaccur
acy/Hofer_2021_IncreaseFaceRecognitionAccuracy.pdf

This section explores the development and validation of simple heuristics
aimed at efficiently distinguishing between successful and unsuccessful face
recognition attempts. Our objective is to enhance the preprocessing steps
within face recognition pipelines by incorporating these heuristics, which are
designed to be both effective and computationally economical. This approach
not only simplifies the preprocessing phase but also reduces the computational
resources required, leading to cost-effective and faster processing.

Expanding upon the analysis of various face detection and recognition algo-
rithms presented in Section 3.1, this discussion shifts towards heuristic meth-
ods that could potentially elevate the performance of face recognition systems.
Ideally, these heuristics also enrich our understanding of the role that distinct
facial features play in successfully detecting faces.

We consider the following heuristics:

1. Eye distance relative to face width: The distance between the eyes, when
scaled by the face width, indicates the face’s alignment with the camera.
Full-frontal faces have amore considerable distance between the eyes rela-
tive to the facewidth,whereas profiles show a smaller distance. Thismetric
helps determine whether the face is fully visible or partially obscured.

2. Eye-mouth distance relative to face height: The vertical distance from the
center of the eyes to themouth, scaledby the faceheight, provides informa-
tion about the face’s tilt and angle. This heuristic is important for assessing
the face’s orientation, which affects recognition accuracy.

3. Face area: The overall size of the face in pixels is thought to correlate with
the amount of detailed information available for recognition. More promi-
nent faces are expected to yield better recognition accuracydue to the richer
detail they contain.

https://www.digidow.eu/publications/2021-hofer-tr-increasefacerecognitionaccuracy/Hofer_2021_IncreaseFaceRecognitionAccuracy.pdf
https://www.digidow.eu/publications/2021-hofer-tr-increasefacerecognitionaccuracy/Hofer_2021_IncreaseFaceRecognitionAccuracy.pdf
https://www.digidow.eu/publications/2021-hofer-tr-increasefacerecognitionaccuracy/Hofer_2021_IncreaseFaceRecognitionAccuracy.pdf

3 Understanding facial features in biometric authentication 41

3.2.1 Experimental setup

To evaluate these heuristics, we conducted an experiment using a dataset col-
lected with a camera in a controlled environment. The dataset includes im-
ages of 13 distinct individuals, each with between 5 and 210 images, averaging
79.3 images per person. Each individual’s template imagewasmanually taken,
and the embeddings were calculated:

1 def get_template_embs(path):
2 templates = dict()
3 for person in os.listdir(template_path):
4 person_path = os.path.join(template_path, person)
5 person_name = os.path.splitext(person)[0]
6 templates[person_name] = rec.get_template_embedding(person_path)
7 return templates
8 templates = get_template_embs(template_path)

The recognition process sorts the results into correct and incorrect identifi-
cations using a specific threshold value set at 1.2. This threshold was chosen
based on empirical analysis, as it effectively balances the number of false posi-
tives (incorrectly identifying an incorrectmatch as correct) and false negatives
(failing to identify a correctmatch) across various datasets. It is recommended
that this threshold be fine-tuned for real-world applications or deployments
to optimize performance for specific conditions or requirements. More details
on adjusting and optimizing the threshold can be found in Chapter 7. With our
threshold of 1.2, we achieve an initial accuracy rate of 25.3 %, with 261 correct
identifications and 770 incorrect ones.

1 correct = []
2 wrong = []
3 for person_folder in person_folders():
4 template = templates[os.path.basename(person_folder)]
5 for img in os.listdir(person_folder):
6 img_path = os.path.join(person_folder, img)
7 emb = rec.get_emb(img_path)[0]
8 if rec.get_score(template, emb) < threshold:
9 correct.append(img_path)
10 else:
11 wrong.append(img_path)

3.2.2 Detailed analysis

Eye distance:We analyzed the distance between the eyes, scaled by the face
width, across successful and unsuccessful recognition attempts. A thresh-
old of 8.5%of the facewidthwas identified, belowwhich recognition failed
(Fig. 3.2). This suggests that ensuring a minimum eye distance is impor-
tant for successful recognition. Discarding faces where the eye distance is
less than e.g. 8%of the total facewidth could reduce false positiveswithout
adversely affecting performance.

3 Understanding facial features in biometric authentication 42

Figure 3.2: Horizontal distance
between eyes scaled by
face width, grouped by
successful identifica-
tion.

Figure 3.3: Vertical distance from
the center of the eyes
to the mouth scaled by
face height and grouped
by successful identifi-
cation.

3 Understanding facial features in biometric authentication 43

Eye-mouth distance: Similarly, the distance from the center of the eyes to
the mouth, scaled by the face height, was examined. A threshold of 20 %
of the face height was established, below which recognition often failed
(Fig. 3.3). This heuristic helps filter images where the face anglemight lead
to recognition errors.

Face area: To test the hypothesis that more prominent faces contain more
information and thus yield better recognition accuracy, we analyzed each
image’s face area in pixels. The results were grouped by successful and un-
successful recognition attempts. Initially, no clear threshold was identified
(Fig 3.4). No clear threshold can be identified even after removing outliers
(Fig. 3.5). However, it was noted that more prominent faces generally pro-
vided better recognition results. Further studies could focus on artificially
reducing image sizes to establish a lower bound for effective recognition.

Figure 3.4: Face area (in pixels)
analyzed for recogni-
tion accuracy, showing
no clear threshold for
success.

Figure 3.5: Face area (in pixels) an-
alyzed for recognition
accuracy with outliers
removed, still showing
no clear threshold for
success.

3 Understanding facial features in biometric authentication 44

Summary

Incorporating these heuristics, as detailed in our prototype implementation
described in Chapter 8, into face recognition pipelines can preemptively filter
out poor-quality images, enhancing overall system accuracy and efficiency.

3.3 Dataset adaptation for key facial feature analysis

FoundationThe foundation of the subsequent sections is the following paper:
Hofer, Philipp, Michael Roland, Philipp Schwarz, Martin Schwaighofer,
and René Mayrhofer. 2021. Importance of different facial parts for face
detection networks. In 2021 9th IEEE International Workshop on Biomet-
rics and Forensics (IWBF). IEEE, Rome, Italy, (May 2021), pp. 1–6. DOI:
10.1109/IWBF50991.2021.9465087

After analyzingwhich face pipeline to use and examining simple heuristics, we
now turn our focus back to occlusion. In this chapter, we differentiate between
threedistinct tasks related to face recognition. Facedetectionand face recogni-
tion have already been introduced in Section 3.1. In addition, we now consider:

3. Face mask detection: These networks are similar to face detection algorithms,
with the major difference that instead of a single class, two classes are de-
tected: faces wearing masks and faces not wearing them. The output are
bounding boxes for both classes.

The training dataset plays an important role in current face detection and
-recognition tools, and largely influences their accuracy. Face recognition
tools are trained with millions of face images (popular implementations of
Arcface [52] use 5.8 million images, FaceNet [181] 200 million images). The
datasets used to train current state-of-the-art face recognition tools do not
mention the use of images of people with face masks, and thus, we suspect
that only a small fraction of the training images contain a person wearing a
facemask. To support this claim,we ran an off-the-shelve facemask detection
algorithm [91] (with a threshold value of 0.5) on the VGGFace2 dataset [27],
a large dataset (3,141,890 images), which is commonly used to train face de-
tection and -recognition networks. The face mask detection algorithm classi-
fiedonly 12,671 images as personwith facemask. Throughmanual verification of
these proposals, we found 12,616 false positives. Only 34 showed people wear-
ing medical face masks and 21 showed people with mouths and noses covered
with fabrics. Thus, only 0.018% (55/3,141,890) of all images in the dataset [27]
depict people with face masks.

Because of this discrepancy of models not seeing masked faces while training
andpeoplewearing facemasks in real-world settings, this chapter analyzes the
performance of three off-the-shelf face detection algorithms (MTCNN [241],
Retinaface [50], and DLIB [107]) in this setting. MTCNN uses a three-stage
pipeline to exploit the inherent correlations between face detection and face

https://doi.org/10.1109/IWBF50991.2021.9465087

3 Understanding facial features in biometric authentication 45

alignment using deep convolutional neural networks [250]. In contrast to
MTCNN’s multi-stage pipeline, Retinaface is a robust single-stage face de-
tector that employs only lightweight backbone networks while still achieving
state-of-the-art accuracy. To analyze a completely different architecture, we
included DLIB’s face detection algorithm, which uses histogram of oriented
gradients (HOG) to detect faces. ,These networks have been trainedwith a neg-
ligible amount—if any—of faces withmasks and are evaluated against images
where parts of the face are occluded, e.g., by putting on a face mask. The main
research question is how different facial parts influence the accuracy of state-
of-the-art face detection networks.

Source codeThe code for modifying the dataset and evaluating is available at
https://github.com/mobilesec/occluded-facedetection-performance and
in Chapter A.

3.3.1 Related work

As Damer et al. [42] stated, the detection of occluded faces is a well-studied issue
in the computer vision domain. Especially since the Covid-19 outbreak, a lot of
research results have appeared in this area.

In order to increase face detection performance on occluded faces, Zhang et
al. [248] propose a hard image mining strategy. This results in more empha-
sis on hard samples, which models reality more closely. Furthermore, to de-
tect partially occluded faces, Zeng et al. [60] introduced the triplet loss training
strategy.

In order to objectively analyze current performance of face detection algo-
rithms on masked faces and to increase the accuracy for future face recogni-
tion algorithms, new datasets with masked faces have been proposed [224].
However, these datasets are still in the early stages as they feature only a 4-
digit number of faces. Thus, they are between 3 (w.r.t. MS1M [72]) and 4 (w.r.t.
FaceNet) orders of magnitude smaller than current face detection datasets
without masks.

Due to the current increase in popularity of face masks, literature tries to im-
prove performance despite having large parts of the face covered [197]. This is
an ongoing research activity. Many current popular face detection algorithms
are not yet specifically trained on occluded faces. Therefore, this chapter stud-
ies the performance of these popular face detection algorithms.

Every face recognition algorithm depends on a face detection algorithm [210].
Thus, if the facedetectionalgorithmdoesnotdetect a face, any face recognition
algorithm is rendered useless. A study for face recognition algorithmshas been
performed by NIST5, where they published an evaluation of the performance
of current state-of-the-art face recognition algorithms [145], without being
fine-tuned formasks. This is a reasonable assumption since it holds formost of

5https://www.nist.gov/

https://github.com/mobilesec/occluded-facedetection-performance
https://www.nist.gov/

3 Understanding facial features in biometric authentication 46

the currently used face recognition systems.NIST also plans to performa simi-
lar experiment with algorithms specifically tuned to recognize people wearing
masks [145]. Similarly, our experiments evaluate the performance of popular
face detection algorithms, consequently focusing on the preprocessing stage
that images need to pass in order to even be considered for later face recogni-
tion.

3.3.2 Experimental results

Our goal is to evaluate the effects of occlusions on face detection and recog-
nition performance by adapting the dataset to highlight key facial features.
This involves systematically modifying images to obscure specific facial re-
gions and analyzing the impact on detection accuracy. For this, we use two dif-
ferent datasets: CFP and real-world mask dataset. For a description of these
refer to Sections 2.2.1 and 2.2.2, respectively.

In order to check which part of the face is most important for face detec-
tion (further discussed in Section 3.4), we modified the images of the first
dataset [186] by excluding certain areas. There are two main strategies em-
ployed:

1. Overlaying a grid in various sizes over the face and blacking out one cell
at a time. To be able to clearly see what modification has taken place, the
resulting modifications for one randomly selected person are visualized in
Fig. 3.6.

2. Removing facial landmarks:

eye(s) (Fig. 3.7a, 3.7c, and 3.7e),

nose (Fig. 3.7i), or

mouth (Fig. 3.7g).

In order to be able to objectivelymeasure the impact of these landmarks on
the face detection accuracy, for each of these settings, we create another
modification where the same amount of area is blacked out on a random
other part of the face (modifications ending with -not).

Since the sizes of the images and therefore the faces vary significantly, the
size of the blacked-out area is proportional to the size of the face. The spe-
cific proportions have been empirically chosen such that the landmark is
sufficiently removed.

Manually modifying 5,000 images for all these settings is not feasible. There-
fore, we automate the creation of these modifications, ensuring consistency
and efficiency in the dataset adaptation process. There are two requirements
for creating these modifications:

1. Background vs. face: Even though all people are displayed in a portrait style
where only one person is visible and takes up themajority of the space, the
exact location of the face is not constant. For creating themodified versions
grid and grid-mask, we do not want to distort the results by blackening out
background pixels instead of pixels belonging to the face.

3 Understanding facial features in biometric authentication 47

(a) 2x2 grid (b) 3x3 grid (c) 4x4 grid (d) 5x5 grid

Figure 3.6: Proposedmodifications of the CFP dataset concerning blacking out
grid cells in various sizes.

(a) eyes (b) not-eyes-
both

(c) eye-left (d) not-eyes-
left

(e) eye-right

(f) not-eyes-
right

(g) mouth (h) not-mouth (i) nose (j) not-nose

Figure 3.7: Proposedmodifications (landmarks-*) of the CFP dataset concern-
ing blacking out landmarks of the face.

2. Face landmarks: In order to be able to remove face landmarks, we need to
know their location.

MTCNN returns the keypoints for the landmarks, and is, therefore, utilized
in this chapter to automatically modify the datasets. The ground truth for all
experiments in this subsection are 4.978 faces, excluding 22 faces for which
MTCNN could not detect a face on the unmodified dataset. We defined the size
of the rectangle through empirical experiments to cover the respective land-
marks properly. For example, for removing the eyes, we chose the rectangles’
width to be 25 % and the height to be 15 % of the face width, as these values
seemtoadequately cover the eyes inmost instances. Even thoughwedonot ex-
pect the specific values used in this chapter to impact the results significantly,
they are easily retrievable for every setting through theprovidedGitHub repos-
itory link.

3 Understanding facial features in biometric authentication 48

Figure 3.8: Proposed modifications (grid-mask-{00-15}) of the CFP dataset
concerning simulating a face mask.

3.4 Experimental results

In order to verify which face regions are most important for face detection,
we check the accuracy of three state-of-the-art face detection algorithms
on computer-modified images and real-world images of people wearing face
masks.

3.4.1 Computer modified images from the CFP dataset

We feed our dataset of modified images from the CFP dataset into MTCNN,
Retinaface, and DLIB and analyze their accuracy.

Baseline

To be able to compare the performance of the face detection algorithms on
differently modified CFP datasets, we first calculate the accuracy of the three
analyzed algorithms on the dataset without any modification. In this chapter,
we are interested in correctly detecting the face. We are not differentiating be-
tween false positives (i.e. wrongly classifying part of the image as a person) and
false negatives (i.e. not detecting a person). They both count asmisclassification
and thus reduce the accuracy equally. From the 5,000 images, between 99.2 %
(DLIB, 4960 / 5000 images) and 99.74 % (Retinaface, 4987 / 5000 images) of
all visible humans are successfully detected.

3 Understanding facial features in biometric authentication 49

Table 3.2: Misclassification rates for grid-2modification.

Area Misclassification rate

MTCNN Retinaface DLIB

Top left corner (00) 14.1 % 9.96% 20.81 %

Top right corner (01) 18% 9.94% 28.65%

Bottom left corner (02) 3.6 % 4.3 % 39.94%

Bottom right corner (03) 9.78% 6.29% 63.1 %

Table 3.3: Accuracy for the flipped image in the grid-2 setting.

MTCNN Retinaface DLIB

Correct 0 faces 2 f. Cor. 0 f. 2 f. Cor. 0 f. 2 f.

grid-flip-2/00 4303 674 2 4479 495 5 3951 1024 4

grid-flip-2/01 4139 836 4 4465 508 6 3616 1360 3

grid-flip-2/02 4758 218 3 4736 230 13 2899 2076 4

grid-flip-2/03 4571 406 2 4659 314 6 1727 3245 7

3.4.2 Grid

The modifications are named after the amount of both horizontal and vertical
cells.

Grid-2 In this setting, we blacked-out a quarter of the face. There is an in-
teresting difference in accuracy between these quarters, as shown in Table 3.2.
These results suggest that the tophalf of the face ismore important for face de-
tection, as they have a higher misclassification rate. Interestingly, in all three
face detection algorithms, the bottom left corner has a significantly lowermis-
classification rate than the other 3 corners. This could be due to two facts:

1. Themodified CFP dataset is biased, and the bottom left quarter is not as in-
formative as the remaining ones. Therefore, the face detection algorithms
(correctly) do not emphasis this part of the image.

2. The pre-trained face detectionmodels are biased, e.g., using a biased train-
ing dataset.

In order to exclude the first possible explanation, we created another modifi-
cation of the dataset by flipping the image vertically (grid-flip-2). If the first
statement is true, we also expect the misclassification rate to flip. Table 3.3
shows that this is not the case. The misclassification rate is still lowest if the
bottom left quarter is blacked out.

Grid-3 For all variations except for blacking out the middle cell, all three al-
gorithms perform pretty well:

3 Understanding facial features in biometric authentication 50

Table 3.4: Accuracy for the flipped image in the grid-4 setting.

MTCNN Retinaface DLIB

Correct 0 faces 2 f. Cor. 0 f. 2 f. Cor. 0 f. 2 f.

grid-flip-4/00 4971 6 2 4961 14 4 4930 46 3

grid-flip-4/01 4925 52 2 4912 64 3 4861 115 3

grid-flip-4/02 4925 50 4 4914 60 5 4837 139 3

grid-flip-4/03 4965 11 3 4951 24 4 4924 52 3

grid-flip-4/04 4942 35 2 4959 16 4 4801 175 3

grid-flip-4/05 4708 259 12 4901 71 7 4659 317 3

grid-flip-4/06 4378 597 4 4925 50 4 4418 557 4

grid-flip-4/07 4916 61 2 4953 24 2 4813 163 3

grid-flip-4/08 4955 20 4 4963 13 3 4840 137 2

grid-flip-4/09 4861 116 2 4922 48 9 4768 208 3

grid-flip-4/10 4814 159 6 4921 51 7 4722 253 4

grid-flip-4/11 4946 30 3 4953 21 5 4816 158 5

grid-flip-4/12 4968 6 5 4966 11 2 4895 80 4

grid-flip-4/13 4954 23 2 4942 33 4 4857 120 2

grid-flip-4/14 4951 25 3 4948 28 3 4862 113 4

grid-flip-4/15 4969 7 3 4960 14 5 4872 103 4

1. MTCNN: 0.3–5.26%misclassification rate

2. Retinaface: 0.54–2.53 %misclassification rate

3. DLIB: 1.19–16.65%misclassification rate

Interestingly, the last case with a black middle cell achieves a significantly
largermisclassification rate: 41.4% (MTCNN), 12.3% (Retinaface), and 55.0%
(DLIB). Thismight indicate that the nose plays an important role in face detec-
tion, which we will test in Section 3.4.2 in more detail.

Grid-4 and Grid-5 The analysis reveals a consistent pattern of increased mis-
classification rates for cells that encompass or intersect with the nose:

As illustrated inTable 3.4,which presents the results for a4x4 grid configu-
ration, there is a notable decline in accuracy for the four settings where the
occluded area overlaps with the nasal region: /5, /6, /9, and /10.

Similarly, in the 5x5 grid configuration, as shown in Table 3.5, the settings
/11, /12, /13, /16, /17, and /18 exhibit a drop in accuracy due to the occlusion
of the nasal region.

3 Understanding facial features in biometric authentication 51

Table 3.5: Accuracy for the flipped image in the grid-5 setting.

MTCNN Retinaface DLIB

Correct 0 faces 2 f. Cor. 0 f. 2 f. Cor. 0 f. 2 f.

grid-flip-5/00 4973 4 2 4968 7 4 4934 42 3

grid-flip-5/01 4925 25 2 4954 23 2 4922 54 3

grid-flip-5/02 4920 56 3 4949 26 4 4846 129 4

grid-flip-5/03 4958 18 3 4949 26 4 4898 78 3

grid-flip-5/04 4973 4 2 4967 8 4 4934 42 3

grid-flip-5/05 4964 12 3 4966 9 4 4887 89 3

grid-flip-5/06 4932 44 3 4960 16 3 4906 69 4

grid-flip-5/07 4618 354 7 4954 19 6 4704 271 4

grid-flip-5/08 4826 149 4 4960 15 4 4863 112 4

grid-flip-5/09 4966 9 4 4963 13 3 4900 76 3

grid-flip-5/10 4957 20 2 4968 9 2 4868 109 2

grid-flip-5/11 4882 94 3 4924 45 10 4756 219 4

grid-flip-5/12 4786 190 3 4940 29 10 4745 231 3

grid-flip-5/13 4751 224 4 4927 47 5 4722 254 3

grid-flip-5/14 4936 40 3 4960 14 5 4852 124 3

grid-flip-5/15 4970 5 4 4968 8 3 4891 86 2

grid-flip-5/16 4943 34 2 4964 12 3 4859 118 2

grid-flip-5/17 4907 69 3 4947 24 8 4878 99 2

grid-flip-5/18 4916 61 2 4959 15 5 4877 100 2

grid-flip-5/19 4965 9 5 4965 9 5 4873 103 3

grid-flip-5/20 4974 3 2 4968 7 4 4919 57 3

grid-flip-5/21 4970 7 2 4958 18 3 4874 103 2

grid-flip-5/22 4964 13 2 4953 23 3 4891 86 2

grid-flip-5/23 4976 9 3 4960 16 3 4890 87 2

grid-flip-5/24 4976 2 1 4970 5 4 4897 79 3

3 Understanding facial features in biometric authentication 52

Table 3.6: Results of three face detection algorithms (MTCNN, Retinaface, and
DLIB) on real-world mask dataset [224].

MTCNN Retinaface DLIB

0 faces 2 f. 3 f. 0 f. 2 f. 0 f. 2 f.

RMFD [224]

(2203 images) 1196 1 1 1250 1 2129 1

Area around landmarks

Eye region The eye region is critical for face recognition [175]. Thus, it might
also be of particular importance for face detection. Therefore, as introduced
in Section 3.3 we modified the CFP dataset, such that features around the eye
region are removed.

MTCNN, Retinaface, and DLIB achieve approximately the same accuracy
(97.2 %, 99.4 %, and 98.4 %, respectively) if the area around both eyes are
removed.

Suppose the eye region plays amore important role than other parts of the face.
In that case, the amount of errors (false positives and false negatives) of face
detection algorithms will be higher if compared to a dataset where rectangles
with the same size are inserted on random positions (eyes-both-not). Our ex-
periments contradict this argument, as all three algorithms detect between 1.2
(Retinaface) and 7.3 percent points (DLIB)more faces if the rectangles are ran-
domly located. This suggests that other parts of the face aremore important for
facedetectionaccuracy.Onepossible explanation is thatpeople in the eyes-both
dataset look like they are wearing sunglasses, which face detection algorithms
have already seen in the training phase.

Similar results are obtained if we occlude a single eye (datasets eyes-
{left|right}[-not]).

Mouth If we remove the mouth, we see similar results as when removing the
eye region. Compared to the versionwhere themouth is covered, the face detec-
tion algorithms detect between 4.6 (Retinaface) and 14.1 (DLIB) percent points
more faces if the rectangles are randomly distributed (mouth-not). Therefore,
the mouth does not seem to have a higher importance in face detection algo-
rithms.

Nose If we evaluate the face detection algorithms on images where the nose
has been blacked out, the algorithms achieve an accuracy of only 72.4 %
(MTCNN), 94.3 % (Retinaface), and 58.2 % (DLIB). If we remove a rectan-
gle of similar size, accuracy increases to 98.3 %, 98.5 %, and 94.6 %, respec-
tively. One (partial) reason for this significant difference (especially consider-
ing MTCNN and DLIB) might be that the nose is in the very center of the face.

3 Understanding facial features in biometric authentication 53

Figure 3.9: Misclassification results in percentage for simulated face mask
modification.

In general, with an average accuracy of 97.4% Retinaface seems to handle oc-
cluded faces significantly better thanMTCNN (91.6 %) and DLIB (87.7 %).

3.4.3 Mask

In this modification we simulated a face mask of various sizes. As expected,
there is a positive correlation between the size of the face mask and the mis-
classification. The results are shown in Fig. 3.9.

3.4.4 Real world mask images

So far, we have only considered face occlusions which a computer has gener-
ated. In this subsection, we evaluate the performance on real-world mask im-
ages from RMFD [224]. A detailed description of the dataset is found in Sec-
tion 2.2.2.MTCNNandRetinaface both detected around 45%of the faces; DLIB
only detected 3% of all faces (Table 3.6). One possible reason for these low ac-
curacy rates is the challenging dataset. Some people wear both a facemask and
sunglasses, resulting in most of the face being occluded.

3.5 MTCNN face-in-facemalfunction

Since many state-of-the-art face recognition tools, such as Arcface and
SphereFace, recommend using MTCNN, we evaluated its performance on
the real-world masked dataset [224]. As shown in Table 3.6, face detection
worked for 46 % (1007/2203) of the images from the real-world mask dataset

3 Understanding facial features in biometric authentication 54

Figure 3.10: MTCNN detects the reflected person in both lenses while missing
the person wearing the eyeglasses.

Figure 3.11: 15 exemplary images where MTCNN could not detect the person.

RMFD [224]. 15 randomly selected images where face detection did not work
are shown in Fig. 3.11. In contrast, Fig. 3.12 shows 15 randomly selected images
where the face detection was successful.

After manually inspecting the cases where face detection did not work, we
found an interesting behavior of MTCNN. Fig. 3.10 shows a masked person
wearing eyeglasses. MTCNN detects the reflected person in both lenses while
missing the person wearing the eyeglasses. This behavior raises the question
whether MTCNN ever detects a person if it has already detected a person in its
subarea. Therefore, the following experimentwas conducted:Two imageswere
manually constructed, each one featuring a person. Without any modification
(left-hand side of both Fig. 3.13a and Fig. 3.13b) the person is detected. After in-
serting another image inside the (fore-)head (Fig. 3.13a) and inside the cheek
(Fig. 3.13b)), MTCNN is not able to detect the original person anymore.

While this previously unknown behavior seems somewhat logical, it has a se-
vere potential for abuse: face recognition relying onMTCNN for face detection
can easily be evaded by intelligent placement of the image in a face, leading to
the actual face stayingundiscovered andunrecognized. Furthermore, as shown
inFig. 3.10,MTCNNcanbe fooled if sunglasses reflect another face. This behav-

3 Understanding facial features in biometric authentication 55

Figure 3.12: 15 exemplary images where MTCNN could detect the person.

ior is particularly problematic since popular tools like Arcface and SphereFace
explicitly recommend using MTCNN.

Summary

This chapter begins by detailing the state-of-the-art face pipeline (Sec-
tion 3.1). Retinaface and Arcface offer the highest accuracy, thus they will be
used as default models in this thesis and also for our prototype described in
Chapter 8. However, these two models are also the slowest, highlighting the
need for tailored solutions based on application requirements, which we will
do in Chapter 7.

Next, the chapter explores heuristics to enhance preprocessing steps in face
recognition pipelines. These include metrics like eye distance relative to face
width and eye-mouth distance relative to face height. In our Prototype (Chap-
ter 8) we use these findings and exclude all sensings where the eye distance is
less than 8 % of the total face width and where the distance of the eyes to the
mouth is less than 20% of the face height Implementing these heuristics pre-
emptively filters out poor-quality images, thereby improving overall system
accuracy and efficiency (Section 3.2).

The chapter also analyzes the performance of three state-of-the-art face de-
tection algorithms on occluded faces. Two different types of occlusions have
been studied:

1. automaticallymodified versions of the CFP dataset, removing various parts
of the face, and

2. real world images of people wearing masks.

The region around the nose plays an important role in face detection. Even
though all three analyzed face detection algorithms achieve roughly the same
accuracyonadatasetwithout occlusions,RetinafaceoutperformsbothMTCNN
and DLIB onmost datasets where large parts of the face are missing.

3 Understanding facial features in biometric authentication 56

(a)

(b)

Figure 3.13: MTCNN detects the original person (left-hand side in a) and b)). If
another person is inserted inside the head (right-hand side in a)
and b)), the original person is no longer detected.

Furthermore, this work found an interesting behavior of the popular face de-
tection algorithmMTCNN: If a face is visible inside another face, the larger face
will not be detected byMTCNN. This can significantly impact face recognition,
which relies onMTCNN for face detection, such as state-of-the-art algorithms
such as Arcface and SphereFace.

Chapter 4

Shrinking giants: The power of tiny
embeddings

Real-world
(Chapter 8)

Application
(Chapter 7)

Sensor
(Chapter 6)

Person
representation

(Chapter 5)

Embedding

Parts of an
embedding
(Chapter 3)

Efficiency
(Chapter 4)

FoundationThe foundation of this chapter is the following paper:
Hofer, Philipp, Philipp Schwarz, Michael Roland, and René Mayrhofer.
2024. Shrinking embeddings, not accuracy: Performance-Preserving Re-
duction of Facial Embeddings for Complex Face Verification Computa-
tions. In 14th International Conference on Pattern Recognition Systems (ICPRS
2024). IEEE, London, UK, (July 2024)

In the previous chapter, we focused on gaining a semantic understanding of
existing facial embeddings. We dissected the components constituting an em-
bedding and explored the significance of individual facial features. This anal-
ysis provided insights into the information encapsulated within these high-
dimensional vectors, highlighting their role in accurately representing bio-
metric data. Building on this foundation, we now focus on reducing the size
of these embeddings.

Conventional embeddings employed in facial verification systems typically
consist of hundreds of floating-point numbers. This widely accepted design
paradigm primarily stems from the swift computation of vector distancemet-
rics for identification and authentication, such as the L2 norm.However, high-

57

4 Shrinking giants: The power of tiny embeddings 58

dimensional embeddings can become a concern when integrated into com-
plex comparative strategies, such as multi-party computations. In this chap-
ter, we challenge the presumption that larger embedding sizes are always su-
perior and provide a comprehensive analysis of the effects and implications
of substantially reducing the dimensions of these embeddings (by a factor of
29). We demonstrate that this dramatic size reduction incurs only a minimal
compromise in the quality-performance trade-off. This discovery could lead
to enhancements in computation efficiencywithout sacrificing systemperfor-
mance, potentially opening avenues formore sophisticated and decentral uses
of facial verification technology.

Source codeTo enable other researchers to validate and build upon our findings, the
Rust codeused in this chapterhasbeenmadepublicly accessible andcanbe
found at https://github.com/mobilesec/reduced-embeddings-analysis-
icprs and in Chapter A.

Why do state-of-the-art face recognition systems use embeddings in the
first place? They use embeddings due to the embeddings’ ability to efficiently
and effectively handle large datasets without needing to retrain for each new
face. Unlike earlier systems which required re-training for every new face,
embedding-based systems generalize well across different conditions and
populations by learning from a diverse initial dataset. This generalization al-
lows for simple and quick integration of new faces by adding their embed-
dings to the system’s database, avoiding the computational burden of re-
training. Additionally, these embeddings facilitate rapid, on-the-fly compar-
isons, enhancing scalability and flexibility in deployment across varied plat-
forms. State-of-the-art facial verification algorithms typically employ high-
dimensional floating-point values for their embeddings:

Deep face recognition [158] (2015): 4,096 dimensions

VGGFace2 [27] (2017): 2,048 dimensions

Arcface [52] (2019): 512 dimensions

SphereFace [123] (2017): 512 dimensions

AdaFace [106] (2017): 512 dimensions

FaceNet [181] (2015): 128 dimensions

These high-dimensional embeddings have proven incredibly useful in facial
verification and recognition systems. Using numerousfloating-point numbers
optimizes verification accuracy and ensures high computational efficiency,
contributing to their broad acceptance as an industry standard.

Despite the unparalleled accuracy of these embeddings in state-of-the-art fa-
cial verification systems, there is a growingmotivation to reduce their size for
three primary advantages:

1. Reduced-size embeddings significantly enhance multi-party computation
capabilities. Systems like Funshade [95] efficiently calculate whether the
distance between two embeddings is below a threshold without revealing
the actual embeddings, ensuring privacy and efficiency.

https://github.com/mobilesec/reduced-embeddings-analysis-icprs
https://github.com/mobilesec/reduced-embeddings-analysis-icprs

4 Shrinking giants: The power of tiny embeddings 59

2. Improved transmission efficiency, especially in environments not reliant
on traditional TCP connections. Specifically, embeddings compact enough
to fit within a 509-byte Tor cell [92] can be transmitted more swiftly. Fur-
thermore, the necessity for embeddings to be small enough for inclusion
in modified Tor introduction packets, as detailed by recent research [89],
highlights their importance in scenarios with strict data size constraints.
Consequently, smaller embeddings offer significant data transfer speed
and efficiency advantages, particularly beneficial in settings with limited
bandwidth or data capacity.

3. Reduced storage requirements, which is especially beneficial for contexts
with limited space, such as smart cards. Smaller embeddings allow formore
efficient space utilization and increase storage capacity, enhancing device
utility and application scope.

We investigate how reducing the embedding size affects facial verification sys-
tem performance, focusing on the trade-offs between efficiency, privacy, and
accuracy. We aim to provide a detailed understanding of the practical impli-
cations of optimizing embedding sizes for better computational efficiency and
system performance. We challenge the common belief that larger embedding
sizes always yield better results in facial verification systems by significantly
reducing these dimensions.

Our hypothesis suggests that drastically reducing the embedding size may not
proportionally decrease performance, but could enhance computational ef-
ficiency. This could allow for more complex comparison functions, such as
multi-party computations, potentially improving the decentralization of bio-
metric systems.

In our investigation, we explore two options for embedding reduction:

1. reducing the number of elements within an embedding (dimension reduc-
tion) and

2. utilizing smaller data types to represent the elements.

Both strategies come with their inherent advantages and potential drawbacks.
Dimension reduction may allow for substantial computational savings, but it
may also compromise the richness of the data represented. Using smaller data
types can similarly reduce computational demand, yet it raises the concern of
losing precision and increasing quantization errors.

The following two sections will focus on each of these approaches in detail. We
aim to illuminate the consequences and benefits of these strategies and ulti-
mately determine whether the trade-off between efficiency and performance
is viable.

In this chapter, we use two datasets: The portrait-like images from LFW (c.f.
Section 2.2.4) and the more challenging CPLFW dataset (c.f. Section 2.2.5).

4.1 Related work

Exploringefficient andcompactbiometric embeddings ispart of the largerfield
of neural network optimization andmodel compression. While the specific fo-

4 Shrinking giants: The power of tiny embeddings 60

cus on reducing the size of biometric embeddings is underrepresented in cur-
rent literature, the extensive research intoneural networkmodelminimization
offers valuable insights and methodologies that apply to this challenge. This
chapter provides a focused summary of selected key techniques inmodel com-
pression, highlighting their relevance and possible applications in shrinking
biometric embeddings. The citations included are representative and not ex-
haustive, aiming to introduce themost significant and pertinent contributions
to this area of study.

Pruning and Sparsity

One of the primary methods in model compression is pruning, which involves
removing redundant or non-critical parameters from a neural network. Re-
search by Yang et al. [231] demonstrates a novel approach to enhance neural
network efficiency. They introduce a low-cost technique using winners-take-
all dropout to regulate dynamic activation sparsity, leading to structured acti-
vationsparsitywith improved levels.Whencombinedwithweightpruning, this
method shows significant runtime speedups with minimal accuracy loss, un-
derscoring the potential of pruning in neural network optimization. Further-
more, Shao et al. [189] propose a dynamic scheme for imposing sparse con-
straints based on filter weights. Their method demonstrates superior prun-
ing performance, substantially reducing parameters and computational costs.
These studies collectively highlight the significance of pruning and sparsity in
enhancing the efficiency of neural networks, a concept that can be transferred
to optimizing biometric embeddings.

Quantization

Quantization, another key technique in model compression, involves reduc-
ing the precision of the network’s parameters. Marinò et al. [130] explore
this concept and propose a novel lossless storage format for CNNs leveraging
both weight pruning and quantization. Their findings indicate that such com-
pression techniques can drastically reduce neural networks’ space occupancy
maintaining competitive performance levels. This approach is directly appli-
cable to biometric embeddings, as it entails representing data with fewer bits,
suggesting that lower precisionmay be sufficient formaintaining the integrity
of biometric data.

4.2 Element reduction

Under ideal circumstances, the elements within a biometric embedding would
exhibit a balanced distribution, where all elements contribute equally, imply-
ing a potential compromise in accuracy should dimensionality reduction occur.
This section seeks to understand the impact of reducing these dimensions on
model performance.

4 Shrinking giants: The power of tiny embeddings 61

We begin by evaluating 6,000 test pairs from the LFW dataset using the L2
norm as the distance metric, selected for its widespread use and effectiveness
in similar research. Hofer et al.’s suggestion that the choice of distance met-
ric is not crucially supported the decision to use the L2 norm, given its proven
efficiency in related empirical studies [87].

To evaluate facial verification models’ verification, a threshold is established.
Embeddings for face pairs are calculated, and their L2 distance is measured.
Pairs are then classified as the same person if the distance is below the thresh-
old or different individuals if above.

We optimized the threshold to minimize both false positives and negatives by
systematically testing every threshold value that altered at least one outcome.
For example, if the set of distances were 1.0, 1.2, 2.0, we evaluated threshold
values as 1.1 (between 1.0 and 1.2), and 1.6 (between 1.2 and 2.0) to ensure com-
prehensive coverage and precise adjustments.

Tests on three face detection and two verification models showed consistent
trends, with the combination of Retinaface and Arcface being the most effec-
tive. Therefore, this chapter will employ this combination, which utilizes an
embedding comprised of 512 dimensions of 32-bit floating points. This estab-
lishesourbaseline:Thesemodels achieved99.3%accuracyon theLFWdataset,
using all 512 dimensions, where accuracy is defined as the ratio of correct pre-
dictions (true positives and true negatives) to the total number of predictions.

We examined the accuracy impact of using lower-dimensional embeddings by
sequentially removing elements and recalculating the error rate and optimal
threshold for each reduced dimension. This process continued until a single-
dimensional embedding was reached, illustrating the accuracy trade-offs at
each reduction stage. Despite its impracticality, a single-dimensional embed-
ding was included to represent the effects of dimensionality variations fully.
The outcome of this iterative process is depicted in Fig. 4.1.

The findings indicate an excess in embedding dimensions, with a reduction in
embeddings not initially leading to a significant increase in errors, suggesting
possible data streamlining without major performance loss. Further robust-
ness checks, involving 100 reruns with randomly selected indices on sets with
7, 32, 120, and 200dimensions, confirmed the initial observation’s consistency
across different dimensions (Fig. 4.2), underscoring the likelihood that many
facial verification systems operate with unnecessary data. These specific di-
mensions were selected for further investigation due to their intriguing char-
acteristics observed in the raw data presented in Fig. 4.1. This consistency adds
weight to our initial finding:many facial verification systems likely carrymore
data than necessary.

Some index subsets perform better due to lower error rates, but slight differ-
ences among all tested combinations suggest that choosing a specific subset
may not significantly affect the outcome. Still, steady performance across 100
random indices does not rule out the possibility of an optimal set.

In order to verify the existence of this optimal set, we identify the subset with
the lowest error rate, within our experimental framework, requiring evalua-
tion of all combinations. However, enumerating all

∑512
n=1

(
n

512

)
combinations is

computationally infeasible.

4 Shrinking giants: The power of tiny embeddings 62

50100150200250300350400450500
0

0.2

0.4

0.6

Amount of embedding dimensions

Fr
ac
ti
on

of
m
is
cl
as
si
fi
ca
ti
on

false-positives
false-negatives

Figure 4.1: The error rate on the LFW dataset correlates with embedding di-
mensionality, rapidly converging to 40/6000 errors. Using 100-
dimensional embeddings results in slightly more errors (69) than
the full 512 dimensions (40).

Data analysis in Fig. 4.1 shows that using only thefirst 32 indices yields a 96.1%
accuracy, close to the 99.3% accuracy achieved with all 512 indices. This high-
lights the effectiveness of our simplified model. Guided by these insights, we
resolved to scrutinize every possible combination encapsulated within these
initial 32 elements. It presents a viable opportunity to conduct an exhaustive
exploration while retaining the potential to yield satisfactory accuracy.

We must note that we approached this analysis with a holistic view of all sub-
sets’ potential combined performances. The performance of a particular index,
for example, index 16 in an initial round, does not necessarily dictate a superior
result in subsequent rounds. Twoseparate indices, despite their individual per-
formances not reaching the same peak as index 16, could in conjunction yield a
superior outcome.

To account for these variations in possible performance, reliance on results
fromprior iterations is avoided. Eachnewroundcommenceswitha fresh, com-
prehensive exploration of all possible subsets. This approach enables the iden-
tification of any advantageous combinations that might otherwise be over-
looked if one relies solely on preceding results.

Our consumer-grade hardware1 processes our pipeline at ∼25 iterations per
second with a reasonable low power consumption of 15W. The most effective
subset and its corresponding error rate for each iteration are reported in Ta-
ble 4.1. The seventh iteration took 35hours,with the eighth andninth projected
to take 116 and 311 hours, respectively. Extrapolating, an exhaustive analysis of
all 32-element subsets would take an estimated 5.5 years on this setup.

Our code is yet to be optimized. Dedicated optimization efforts could signif-
icantly reduce computation time. A complementary strategy is employing a
greedy search instead of a full grid search. A greedy search iteratively adds the
1Intel Core i7-10510U

4 Shrinking giants: The power of tiny embeddings 63

0 10 20 30 40 50 60 70 80 90 100
0

500

1,000

Runs

A
m
ou
n
to

fe
rr
or
s

(F
P+

FN
)

FP
FN

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

Runs

A
m
ou
n
to

fe
rr
or
s

(F
P+

FN
)

FP
FN

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

Runs

A
m
ou
n
to

fe
rr
or
s

(F
P+

FN
)

FP
FN

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

Runs

A
m
ou
n
to

fe
rr
or
s

(F
P+

FN
)

FP
FN

Figure 4.2: Exploring potential index-dependent bias in the LFW dataset is
shown, wherein particular index sets might yield significantly su-
perior performance. This is assessed through 100 iterations, with 7,
32, 120, and 200 dimensions (top to bottom) randomly chosen and
subsequently tested for error rates.

4 Shrinking giants: The power of tiny embeddings 64

Table 4.1: Brute-force search of the best elements in the LFW dataset.

Iteration Elements Percentage of misclassification

1 16 32.2%

2 16, 31 25.2%

3 16, 25, 31 20.9%

4 16, 25, 29, 31 17.7%

5 14, 16, 28, 29, 31 15.8%

6 14, 15, 16, 28, 29, 31 14.1%

7 1, 3, 16, 17, 24, 26, 31 12.4%

best element to an optimal set, reducing the search space to 32 ∗ n, where n is
the number of elements, enabling completion withinminutes (Table 4.2). This
non-exhaustive method offers a practical solution with lower computational
demand.

We conducted a comparative analysis to evaluate the effectiveness of greedy
search compared to exhaustive brute-force search Results for the first seven
elements suggest that greedy search can effectively substitute for brute-force
search, as shown in Fig. 4.3.

Subsequently, in our follow-up experiment, we utilized the top-performing
indices identified by the greedy search instead of the initial elements. This
modified approach produced promising results, achieving an accuracy rate of
96.1% with just 32 elements. This performance is notably close to the original
99.3% accuracy achieved using all 512 elements, illustrating the potential of
the greedy searchmethod in reducing computational load while maintaining a
high degree of accuracy.

A significant benefit of the greedy search method is its flexibility, as it is not
confined to 32 elements and can instead efficiently evaluate error rates across
all 512 dimensions. While the absolute valuesmay be lower, the trend observed
in this greedy-search setting closely aligns with that seen in Fig. 4.1. Addition-
ally, it is important to note a slight but noticeable increase in the error rate be-
yond the 230th index marker. This suggests that the presence of certain ele-
ments is detrimental to the performance of face verification. Such an inference
reiterates the notion that reducing the embedding size, particularly during the
training phase, may even enhance accuracy.

The results of the greedy search reinforce our observations from Fig. 4.1, con-
firming that a significantly high level of accuracy can be maintained with a
reduced subset of elements. To validate the robustness and applicability of
our findings, we employed the greedy search method on the more demanding
CPLFW dataset, characterized by its array of complexities including unfavor-
able angles and diverse lighting conditions, as depicted in Fig. 4.6.

While the graphical representation resembles Fig. 4.1, an increased optimal er-
ror rate, reflective of the greater complexity inherent in the CPLFW dataset,
is observed. However, a meticulous examination reveals that the greedy algo-
rithm selects distinct elements for each dataset. Even so, employing a rank-1

4 Shrinking giants: The power of tiny embeddings 65

Table 4.2: Greedy search for the best indices set using the first 32 elements.

It. Elements # Err

1 16 1934

2 16, 31 1514

3 16, 25, 31 1254

4 16, 25, 29, 31 1062

5 16, 17, 25, 29, 31 950

6 4, 16, 17, 25, 29, 31 853

7 1, 4, 16, 17, 25, 29, 31 773

8 1, 4, 15, 16, 17, 25, 29, 31 686

9 1, 4, 15, 16, 17, 18, 25, 29, 31 636

10 0, 1, 4, 15, 16, 17, 18, 25, 29, 31 583

11 0, 1, 4, 15, 16, 17, 18, 25, 29, 30, 31 542

12 0, 1, 4, 10, 15, 16, 17, 18, 25, 29, 30, 31 511

13 0, 1, 4, 10, 15, 16, 17, 18, 24, 25, 29, 30, 31 477

14 0, 1, 4, 10, 12, 15, 16, 17, 18, 24, 25, 29, 30, 31 440

15 0, 1, 4, 10, 12, 15, 16, 17, 18, 20, 24, 25, 29, 30, 31 408

16 0, 1, 4, 10, 12, 15, 16, 17, 18, 20, 24, 25, 26, 29, 30, 31 386

17 0, 1, 4, 9, 10, 12, 15, 16, 17, 18, 20, 24, 25, 26, 29, 30, 31 369

18 0, 1, 4, 9, 10, 12, 15, 16, 17, 18, 20, 21, 24, 25, 26, 29, 30, 31 355

19 0, 1, 4, 9, 10, 12, 14, 15, 16, 17, 18, 20, 21, 24, 25, 26, 29, 30, 31 343

20 0, 1, 2, 4, 9, 10, 12, 14, 15, 16, 17, 18, 20, 21, 24, 25, 26, 29, 30, 31 329

21 0, 1, 2, 4, 7, 9, 10, 12, 14, 15, 16, 17, 18, 20, 21, 24, 25, 26, 29, 30, 31 318

22 0, 1, 2, 4, 7, 9, 10, 11, 12, 14, 15, 16, 17, 18, 20, 21, 24, 25, 26, 29, 30, 31 303

23 0, 1, 2, 4, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 20, 21, 24, 25, 26, 29, 30, 31 297

24 0, 1, 2, 4, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 20, 21, 24, 25, 26, 29, 30, 31 281

25 0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 20, 21, 24, 25, 26, 29, 30, 31 267

26 0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 20, 21, 24, 25, 26, 27, 29, 30, 31 255

27 0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31 248

28 0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31 239

29 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31 233

30 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31 234

31 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 225

32 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 233

4 Shrinking giants: The power of tiny embeddings 66

1 2 3 4 5 6 7

1,000

1,500

2,000 1,
93
4

1,
51
4

1,
25
4

1,
06
2

95
0

85
3

77
3

1,
93
4

1,
51
4

1,
25
4

1,
06
2

94
9

84
4

74
6

Iteration

#
er
ro
rs

Greedy Full

Figure 4.3: In the LFW dataset, error rates obtained from the greedy search are
compared with those from the exhaustive brute-force search. The
first four elements align perfectly; thereafter, the performance be-
gins to exhibit a slight decline. Nevertheless, the similar shape sug-
gests that the greedy search is a satisfactory proxy.

50100150200250300350400450500

0

500

1,000

1,500

2,000

Amount of dimensions used

A
m
ou
n
to

fe
rr
or
s

Figure 4.4: Greedy search over all 512 dimensions on the LFW dataset.

4 Shrinking giants: The power of tiny embeddings 67

2 4 6 8 10 12 14 16 18 20 22 24

0

500

1,000

1,500

2,000

#
er
ro
rs

Error greedy best Error truncate Random

Figure 4.5: Comparative analysis of the greedy search against our other config-
urations (initial and random elements). X-axis: Amount of dimen-
sions used

050100150200250300350400450500
0

0.2

0.4

0.6

0.8

Embedding element size, performed on CPLFW dataset

Pe
rc
en
ta
ge

of
m
is
cl
as
si
fi
ca
ti
on

false-positives
false-negatives

Figure 4.6: The shape of the error rate on the CPLFW dataset (shown here) is
similar to the error rate of LFW dataset (Fig. 4.1).

4 Shrinking giants: The power of tiny embeddings 68

0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

Index of embedding

N
eg
at
iv
e
co
n
tr
ib
ut
io
n

to
ov
er
al
le
rr
or

Easy
Hard

Figure 4.7: Cross-dataset index evaluation: Analysis of index contributions to
overall classification error in L2 distance metrics. A more signifi-
cant difference between the two bars signifies higher classification
inaccuracies related to a specific index. The blue bar represents a
visualization of the LFW dataset, whereas the CPLFW dataset is de-
picted in the red bar. Notably, the index contributions to the total
distance exhibit striking similarities across both datasets.

approach reveals that the top-performing index from the LFWdataset can still
deliver substantial results on the CPLFW, albeit not necessarily as the foremost
choice.

The impact of each index on the resulting L2 distance is evaluated to evaluate
their cross-dataset applicability. For indices increasing the error in classifying
two images of the same individual (indicating amisclassification), the associ-
ated distance increases the index value. Conversely, for indices that err in dis-
tinguishing between different individuals (indicating a correct classification),
the index value is reduced by the corresponding distance. Thus, a higher value
of a particular index reflects its contribution to an increased overall classifica-
tion error, demonstrating its propensity to introduce “wrongness” into the to-
tal distancemetric. Finally, all index values are normalized to a range between
0 and 1 to standardize the results and enable a balanced comparison. The dis-
tribution of the first 32 indices is depicted in Fig. 4.7, providing insights into
their respective influence on classification accuracy.

Interestingly, and contrary to initial expectations, the indices that minimally
contribute to the error differ from those identified by the greedy search. For
instance, despite index 16’s superior performance in the greedy search, it is
ranked among the least effective in the heatmap. This discrepancy could be ex-
plained by a uniform contribution of these indices to the total error, rendering
selecting a specific index less crucial.

To further validate theseobservationsandcompare the relative effectivenessof
various configurations, we assessed the greedy search’s performance relative
to other methods, including the use of initial elements and random selection.
The comparative results are detailed in Fig. 4.5. Moreover, an examination of

4 Shrinking giants: The power of tiny embeddings 69

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

1,000

2,000

Index (0-31)

Er
ro
r

0 50 100 150 200 250 300 350 400 450 500
0

1,000

2,000

Index (0-511)

Er
ro
r

Figure 4.8: Visual representation of the error generated when only the corre-
sponding index is utilized.

each index’s individual contribution shows that the choice of the starting index
has a negligible impact on the overall error.

4.3 Data quantization

As the field of machine learning evolves, researchers are exploring efficient
ways to compress and optimize models. Data quantization is a key technique
that reduces data size and complexity bymapping inputs to fewer outputs, im-
proving storage and processing efficiency with little impact on performance.
The concept of data quantization is established in machine learning. Liang et
al. [117] showed that quantization might not significantly affect system per-
formance. Our study differs by focusing on output quantization, specifically of
facial embeddings. This section will cover quantization techniques, their im-
pact on facial verification systems, and their implementation to minimize fa-
cial embedding size with minimal performance loss.

This study aligns with the element reduction approach outlined in Section 4.2,
targeting the optimization of facial embeddings through distinct methods. El-
ement reduction eliminates redundant dimensions, whereas data quantization
enhances value representation efficiency. In our approach, we assume uniform
quantization for the embeddings, where each level of quantization uniformly
represents a segment of the input data range. This simplifies the complexity
and ensures more predictable effects on system performance. Section 4.4 ex-
amines their synergistic potential to efficiently minimize facial embeddings

4 Shrinking giants: The power of tiny embeddings 70

20 40 60 80 100 120 140 160 180 200

102

103

Scale factor

Er
ro
r

Figure 4.9: Visualization of different scale factors. The optimal threshold,
which minimizes the combined rate of False Positives (FP) and
False Negatives (FN), is dynamically recalculated for each respec-
tive scale factor.

without compromising verification system quality and performance.

Quantization of facial embeddings involves converting the 32-bit floating-
point values to alternative data types. This study assesses the impact of such
conversions on error rates, emphasizing the importance of precision beyond
the optimal fixed point range in filter design, as small differences might have
a significant impact, especially if they are near the threshold range. The goal is
to analyze the balance between data compactness and accuracy.

The original 32-bit floating point values fall within a relatively constrained
range: approximately −0.2 to +0.2. We employ calibration to investigate the
contributionof thefloatmantissaandexponent to theoverall informationcon-
veyed.Wemultiply the original values by a range of factors (between 1 and 200)
and subsequently, convert the scaled values into an integer format (which in-
curs loss of information).

Fig. 4.9 illustrates the relationship between each scaling factor and the corre-
sponding error rate, providing a detailed overview of the quantization impact.

Analysis of error rates across different scaling factors reveals a plateau effect
commencing at a calibration value of 70. Beyond this point, we observe no sig-
nificant decline in the error rate, as evidenced by a marginal difference in ver-
ification accuracy (99.32% as opposed to the original 99.33%).

The range of the resulting values with a scale factor of 70 spans from−19 to 21.
This suggests the adequacy of a 6-bit signed integer datatype for representing
our data post-scaling.

An alternative approach involves adjusting the scaled values with an offset of
+19, thus repositioning the range to span from0to40.Consequently, thevalues
can be efficiently represented using an unsigned 6-bit integer datatype.

4 Shrinking giants: The power of tiny embeddings 71

4.4 Proposed pipeline

We suggest a pipeline that operates on only 70 indices determined by the
heatmap of each index over the LFW dataset (which can be found in fi-
nal_indices.txt in the accompanying Git repository) and cast the embeddings to
an8-bit integer format (as there is no6-bit integer data type inmost program-
ming languages) with a calibration value of 70.

This modification leads to a reduction of over 29 times the bit requirement
(from 16,384 bits to 560 bits), with only a slight decrease in accuracy (99.3%
to 98.6%), corresponding to a net increase of 44 errors (out of 6,000 compar-
isons).

When evaluated on the challenging CPLFWdataset, we observe a slightly larger
reduction in accuracy (from 85.4% to 79.87%), resulting in an increase of 331
errors (out of 5,964 comparisons).

Nonetheless, this approach preserves the computational efficiency, exhibiting
a theoretical reduction in computation by a factor of 29.

Given that we are using only 6 of the 8 available bits, we could apply a more
practical approach to leverage the standard 8-bit hardware platforms. By en-
coding the 70 sets of 6 bits into approximately 53 sets of 8 bits, we optimize
the use of existing storage and computational capacity. The adjustment could
enhance storage efficiency up to a factor of 38 (424 bits / 16,384 bits), while
preserving the precision of the results. This strategy enables us to make more
efficient use of hardware capabilities without compromising the accuracy of
our computations.

An additional advantage of this compact size is its compatibility with an SHA-
512hash functiondue to similar sizes, presenting potential benefits for specific
applications. For instance, cryptographic algorithms operating with such data
can readily use these embeddings without requiring anymodifications.

4.5 Practical implications of compact embeddings

Beyond the sheer academic fascination and the computational benefits lies the
real-world applicability of these compact facial embeddings. Given the cur-
rent trends towards decentralized and edge computing, the size reduction be-
comes evenmore paramount. Edge devices, such as smartphones or embedded
devices, often have limited computational power and storage capacities com-
pared to large GPU clusters. We can deploy facial verification capabilities on
thesedeviceswithoutoverburdening thembyemploying compact embeddings.

Furthermore, smaller embeddings imply faster encryptionanddecryptionpro-
cesses in security and data privacy. If facial verification data needs to be trans-
mittedover anetwork, compact embeddingsmean fewerdata to send, resulting
in quicker transmission times and reduced chances of interception.

4 Shrinking giants: The power of tiny embeddings 72

Summary

We conducted a thorough investigation into the effects of reducing embedding
size on the accuracy of facial verification algorithms, specifically by decreas-
ing the number of elements andmodifying data types. Contrary to the common
belief that high-dimensional embeddings are crucial formaintaining accuracy,
our findings reveal that accuracy levels above 90 % can be achieved even with
a substantial reduction in embedding size—approximately by a factor of 29.
This discovery has significant implications for applications in environments
with limited computational power and storage capacity.

The reduced size of the embeddings not only improves efficiency in compari-
son, storage, and transmissionbut alsomakesmulti-party computation (MPC)
possible in the context of facial verification. Smaller embeddings enable more
efficient comparisons in complex facial recognition tasks, which is particu-
larly beneficial for decentralized and privacy-sensitive systems. The compact
nature of these embeddings also reduces storage requirements, making them
ideal for use in devices with limited storage capacity, such as smart cards. Fur-
thermore, the smaller size facilitates faster data transmission over networks,
which is crucial in scenarios with restricted bandwidth or where rapid data
transfer is essential.

In summary, our work demonstrates that it is possible to achieve high accu-
racy in facial verification while significantly reducing embedding size, thereby
enabling more efficient and practical applications, including the feasibility of
MPC in real-world settings with constrained resources.

Chapter 5

One template to rule them all: Fusing
embeddings

Real-world
(Chapter 8)

Application
(Chapter 7)

Sensor
(Chapter 6)

Person
representation

(Chapter 5)

Embedding

Parts of an
embedding
(Chapter 3)

Efficiency
(Chapter 4)

FoundationThe foundation of this chapter is the following paper…
Hofer, Philipp, Michael Roland, Philipp Schwarz, and René Mayrhofer.
2023. Efficient Aggregation of Face Embeddings for Decentralized Face
Recognition Deployments. In Proceedings of the 9th International Confer-
ence on Information Systems Security and Privacy (ICISSP 2023). SciTePress,
Lisbon, Portugal, (February 2023), pp. 279–286. DOI: 10.5220/001159930
0003405
… and its extended version in a journal:
Hofer, Philipp, Michael Roland, René Mayrhofer, and Philipp Schwarz.
2023. Optimizing Distributed Face Recognition Systems through Efficient
Aggregation of Facial Embeddings. Advances in Artificial Intelligence and
Machine Learning, 3, 1, (February 2023), 693–711. DOI: 10.54364/AAIML
.2023.1146

This chapter builds upon the foundations laid in previous discussions on the
detailed exploration of embedding contents (Chapter 3) and embedding mini-
mization (Chapter 4). Our journey so far has shown that while individual em-
beddings offer a snapshot of an identity, real-world applications benefit from
a more comprehensive representation: This chapter introduces the concept of

73

https://doi.org/10.5220/0011599300003405
https://doi.org/10.5220/0011599300003405
https://doi.org/10.54364/AAIML.2023.1146
https://doi.org/10.54364/AAIML.2023.1146

5 One template to rule them all: Fusing embeddings 74

fusing embeddings to respond to this requirement, improving efficiency and
privacy in decentralized systems. By aggregatingmultiple embeddings, we can
construct a template that better represents an individual’s biometric data.

In centralized systems, the current live embedding is typically compared to a
set of template images of the person using fast distance functions such as L2
norm or cosine similarity. This process is inefficient on two levels:

1. Requiringmultiple (on a holistic system point of view, redundant) similar-
ity calculations would hurt both provider diversification and hinder small
providers in serving larger quantities of users because of increased hard-
ware requirements. Ideally, one could combine different aspects of these
multiple embeddings extracted from face images with as little data as pos-
sible. Since researchon still image face recognition is extensive, andanem-
bedded camera sensor device can often derive embeddings of the currently
visible person online, creating a new, aggregated embedding based on all
images available of an individual would not change the backbone of state-
of-the-art face recognition pipelines.

2. Having a single (aggregated) embedding, thus not depending on multi-
ple similarity computations,minimizes network traffic, which is especially
significant for decentralized, embedded systems.

Performing many distance calculations is possible due to the straightforward
nature of the comparisons within a centralized database. However, in de-
centralized systems, the scenario changes significantly. Sensors should avoid
sending the current live embedding to all potentially relevant devices where
a template of that person might be stored. Conversely, the device storing the
template should avoid leaking its data to the sensor. This creates a privacy and
security challenge.

Multi-party computation (MPC) techniques, such as Funshade [95], can be
employed to address this issue. MPC allows the comparison of embeddings
without revealing the actual data, thus preserving privacy. The result of the
MPC computation is a boolean value indicating whether the distance between
the twoembeddings is smaller thanapredefined threshold.However, perform-
ing this calculationwithinMPC isnot trivial. Comparingmultiple template em-
beddings to the current live embedding can be complex, resulting in significant
time overhead, including potential network requests. To overcome this chal-
lenge, we propose reducing multiple template embeddings to a single fused
embedding. This reduction aims to streamline the process,making performing
MPC efficiently in decentralized networks feasible. By consolidating the tem-
plates into one embedding, we can maintain MPC’s security and privacy ad-
vantages while mitigating the time complexity associated with multiple com-
parisons.

The fusion process involves statistical techniques that integrate multiple em-
beddings while preserving the critical features necessary for identification.
This method was optimized through extensive testing on our new in-the-
wild dataset, which provided real-world conditions essential for validating our
approach. Implementing this fusion technique allows for scalable and effi-
cient biometric systems that respect user privacy while offering the flexibility

5 One template to rule them all: Fusing embeddings 75

needed in decentralized frameworks. It reduces network load, which is crucial
for systems operating in bandwidth-constrained environments. It supports a
user-centric model where individuals can manage their biometric templates
without relying on a central authority.

This chapter evaluates differentmethods of aggregating face embeddings from
efficiency and accuracy perspectives (Section 5.2). We also examine the limit
of sufficient image quantity, analyzing whether there is a clear point at which
adding more images does not significantly enhance recognition accuracy. We
propose a new in-the-wild dataset to validate whether using multiple images
in different settings significantly boosts accuracy. Subjects take around 50 im-
ages of themselves in a single setting, which only takes about 3 seconds, en-
suring practical usability. Additional images in diverse settings are used to ap-
proximate the true embedding and verify performance improvements.

5.1 Multi-image face recognition

In order to evaluate and compare different face recognition models, they are
tested against public datasets.Manyof these face recognitiondatasets typically
have two properties:

1. High quality: As the datasets are created with training face recognition
models in mind, the images of a person mainly consist of a portrait image
in a fairly high resolution.

2. High quantity of people: Typically, neural network bias becomes less when
more images are used. Therefore, datasets strive for a high amount of im-
ages.

Most datasets define a fixed set of pairs of images to allow for objective evalu-
ation of face recognition methods. This strategy uses a single image as a tem-
plate in state-of-the-art face recognitionpipelines.This template is thencom-
pared with positive (same person) and negative (different person) matches.
This approach tests a critical metric of face recognition: How well it performs
on still images. Compared tomore complex scenarios, only testing on still im-
ages is efficient at runtime, which decreases computation time to evaluate the
accuracyof adataset.However, there aredifferent aspects thismethoddoesnot
test, such as how to handle multiple images or even video streams of a person.

In reality, these ignored aspects are essential, as live images from cameras
do not produce high-quality images similar to those frommany available and
commonly used face recognition datasets. Instead, the person-camera angle is
far fromoptimal. Theperson isnotdirectly in front of the camera; thus, the face
is quite small. Furthermore, the face can be occluded, e.g., with a scarf, sun-
glasses, or hair. In these real-world settings, face recognition pipelines have
more difficulty recognizing people than with public datasets, although new
datasets try to represent these challenges. Nevertheless, there is a potential
benefit of real-world scenarios: Many images of a single person are available,
as the person is presumably visible for (at least) many seconds, and thus, a
camera is able to capture significantly more than one image.

5 One template to rule them all: Fusing embeddings 76

One way of bridging the gap of havingmultiple images of the same person and
being of lower quality is to merge the embeddings obtained frommultiple im-
ages into a single embedding. More accurate templates, by definition, lead to
accuracy improvements in face recognition. The idea behind using multiple
images is that it is not possible to capture a perfect representation of a face in
a single picture for various reasons:

The image only captures part of the face. Covering frontal and profile pic-
tures in a single 2D image is technically impossible.

External conditions, such as lighting, camera quality, and insolation,
change.

People themselves change over time:Growing a beard, gettingwrinkles or a
newhair cut, putting onmakeup, getting pierced or tattooed, getting a scar,
or having surgical interventions.

Different accessories, such as (sun) glasses, headgear, earrings, or masks
are worn.

While a single image cannot account for all these different settings, multiple
images can capture different face areas and settings. Therefore, usingmultiple
images provides more information about the individual’s face, and we there-
fore expect increased accuracy. As introduced in Section 1, comparing the cur-
rent live image withmultiple embeddings of the same person is unfavorable in
some situations due to hardware and network constraints. For an efficient face
recognition pipeline, it would be best to have only a single embedding that is
used as a template for a person. This would allow the system tomake use of the
vast literature on single-face image recognition.

In contrast to this single-embedding approach, in recent years, other work
has been published in the domain of video face recognition [71, 124, 169, 171,
251]. Most of these papers propose an additional neural network to perform
theweighting of different embeddings [71, 124, 171, 230]. These additional net-
works have a significant runtime impact, especially on embedded devices, as
they need to perform an additional inference step. In order to be runtime-
efficient even on embedded hardware, this chapter focuses on creating a single
embedding.

In state-of-the-art face recognition tools, embeddings are high-dimensional
vectors. If multiple embeddings should be aggregated into a single one, this
opens up the following questions:

Q1. Howdowe (numerically) best aggregate the embeddings, and is this aggre-
gation increasing face recognition performance? How can we define best?

Q2. After knowing how to aggregate embeddings, howmany images are neces-
sary and useful? Is there a point fromwhich adding additional embeddings
do not significantly increase accuracy?

Dependingon the application, theremayormaynot be a lot of data available for
each person. Therefore, inmany situations (e.g. user enrollment) it couldmake
the process significantly easier if the data can be recorded in a single session
and therefore feature only one setting. This leads to the question:

5 One template to rule them all: Fusing embeddings 77

Q3. Is it beneficial to use different settings? Is itworth creating imageswith and
without (typical) accessories, such as face masks, glasses, and scarves?

Similarly, expectingmany images from a newuser in various settingsmight be
unrealistic. Verifying that these different settings belong to the same person
makes it even more complicated. It is easy and practical to capture a couple of
images in one place.

Q4. Is it enough to use only imageswhilewe rotate our heads for the aggregated
embedding, similar to the process of how some smartphones enroll users’
faces? Is the accuracy increased ifwe include totally different settings in the
aggregated embedding?

5.2 Embedding aggregation

This chapter evaluates different aggregation strategies and proposes efficient
ways of aggregating embeddings in order to create a single, efficient template-
embedding containing as much information as possible. If multiple images of
a person are used, the position of the person of interest has to be extracted in
each frame. These positions could be either fed to a neural network that ex-
pectsmultiple images (or a video) as input (video-based face recognition) or the
embedding could be extracted for each frame and then aggregated (imageset-
based face recognition).

Video face recognition networks have to perform all necessary steps in a sin-
gle network. Extracting the embeddings frame-by-frame andonly then aggre-
gating these embeddings to a single template allows for amuchmoremodular
pipeline. This goes hand in hand with traditional face recognition pipeline ap-
proaches, which can be separated into face detection, face tracking, and face
recognition, and therefore also allow for individual optimization of each part.
Additionally, systemsusing this approach canuse its vast literature, as thefield
of (still) image face recognition ismuchmore advanced than video face recog-
nition. Therefore, in this chapter,we focuson themodular approachof extract-
ing embeddings from every image and then aggregating them.

Sincewewant to aggregatemultiple embeddings extracted fromsingle frames,
weneed an aggregation strategy. Literature typically calculates themeanof each
dimension of the embedding, e.g. as proposed by Deng et al. [52]:


a1

...

an

 ,


b1

...

bn

 →

mean(a1, b1)

...

mean(an, bn)


Fig. 5.1 shows the instance space of two people. The x- and y-axis represent
the PCR-reduced form of their embeddings. The triangle represents the aver-
age of each dimension of the embedding for each person. There is no analysis
of whether it is useful to use the mean of each dimension, or whether there
are better approaches to aggregate embeddings. There is not even an analy-
sis if calculating the mean of the embeddings improves the accuracy of face

5 One template to rule them all: Fusing embeddings 78

(a) the mean-template. (b) the first image.

Figure 5.1: Distance of the embeddings to…

Figure 5.2: Example images of a person from the CelebA dataset.

recognition pipelines. In order to verify this hypothesis, a baseline is needed to
compare the performance of aggregated embeddings to. In this chapter, build-
ing on the motivation outlined in Section 3.1.3, we employ pre-trained state-
of-the-art models for face detection and recognition: Retinaface [50] and Ar-
cface [52], respectively. Arcface receives a single image as input and creates a
512-dimensional vector. Even thoughwe did not explicitly test different archi-
tectures, we expect similar results on semantically similar networks.

5.3 Dataset adaptation

We selected the CelebA dataset [125] for evaluating the face recognitionmodels
due to its highnumber of images per individual tomeet the requirements of our
analysis. Furthermore, this dataset comprises a large number of images across
thousands of individuals, making it particularly suitable for robust evaluation.
A comprehensive description of the dataset is provided in Section 2.2.6. No-
tably, out of the 10,177 individuals included in the dataset, 2,343 have exactly
30 images each.

In order to reduce the chance of having outliers, we remove all imageswith less
than 30 images (Fig. 5.3). Furthermore, we cleaned the dataset by performing

5 One template to rule them all: Fusing embeddings 79

Figure 5.3: Distribution of number of people concerning their number of im-
ages.

Figure 5.4: Example images where Retinaface could not detect a person.

face detection with Retinaface. From the initial 2.343 people with 30 images,
there are 20 people containing an image where face detection could not detect
a face—mainly due to too much occlusion. 18 randomly chosen images where
facedetectiondidnotworkare shown inFig. 5.4.Toensurea consistentdataset,
we removedall imagesof these20people, resulting inafinal set of 2.323people.

The CelebA dataset has been pre-processed so that the main person is in the
center of the image. If multiple faces are detected, we take the most central
person and ignore the remaining ones.

There are 30 images of 2.323 people each in our cleaned dataset, resulting in a
total number of 69.690 images. In order to objectively evaluate the difference
between different aggregation strategies, we reserve 10 random images of each
person as potential template images. Since the dataset does not have a specific
order, without loss of generality and for reproducibility, we reserve the first
10 images as potential template images.

In the first setting (baseline), we (only) use the embedding of the first image
and ignore images 2–9:

templatebaseline(person) = embperson[0]. (5.1)

Calculating the mean of different embeddings is only one possible strategy to
aggregate embeddings. For different methods, such as taking the minimum of

5 One template to rule them all: Fusing embeddings 80

each dimension, we numerically aggregate each dimension of the embeddings
from images 1–9, using its respective aggregation strategy (as):

e11

e12
...

e1m

 , . . . ,


en1

en2

...

enm

 →

as(e11, . . . , en1)

as(e12, . . . , en2)
...

as(e1m, . . . , enm)

 . (5.2)

Typically, face recognition models are trained such that the L2 distance be-
tween two faces represents their (non-)similarity:

dist(emb1, emb2) =

√√√√ n∑
i=1

(emb1 − emb2)2. (5.3)

Applications set a threshold for their specific task, under which two faces are
recognized as the same person. This decision is based on their safety require-
ments. For security-critical applications, the threshold should be lowered,
which results in fewer false-positives (but potentially more false-negatives).

isSamePerson(emb1, emb2) =1, if dist(emb1, emb2) ≤ threshold

0, otherwise.

(5.4)

In order to compare the strategies,we take the average distance of the template
to each embedding from images 11–30 as our metric:

err =

∑
p∈people

∑
embtest∈testEmbs dist(embtest, ptemplate)

len(people)× len(testEmbs)

A smaller error represents a higher confidence of the network that the template
belongs to the test images. Semantically, the error specifies the template’s av-
erage distance (Eq. 5.3) to each test image.

The CelebA row inTable 5.1 shows the resulting distance between the template-
and test-embeddings. Fig. 5.5 visually represents the CelebA column. With re-
spect to our Q1: Except for the (cheating) optimal setting (which we discuss
later), and the Best template per comp (where we employ an even greater degree
of bias by utilizing the optimal reference image for each comparison), the best
aggregation strategy is using the mean of every dimension of the embedding.
As the distance compared to the baseline is significantly lower in the average
(andmedian) setting, this clearly shows the practical impact of using multiple
(in our case 10) images as templates. Aggregating multiple embeddings using
the mean significantly outperforms the baseline. Fig. 5.1 shows the intuition
behind this behavior on the first two people. If more than one image of a per-
son is used, the resulting embedding more accurately approximates the opti-
mal embedding. The average of these test embeddings represents the optimal

5 One template to rule them all: Fusing embeddings 81

Figure 5.5: Average distance of template- to test-embeddings in CelebA
dataset.

Figure 5.6: Instance space of optimal vs average aggregation.

5 One template to rule them all: Fusing embeddings 82

Table 5.1: This table shows the average distances of the template embedding
to the test embeddings with respect to different aggregation strate-
gies. Thevalue inbrackets represents the factorof thedistanceof that
strategy compared to the baseline. A factor of 2 means that the av-
erage distance of the baseline is twice as high as this particular ag-
gregation strategy. For matches, a higher factor is favorable, while
for non-matches, a lower factor is better. The gray rows are displayed
for comparison reasons only, as they cheat and use information not
available in production.

CelebA Panshot-Normal Panshot-Smile

Baseline Match 0.748 (1.0x) 0.617 (1.0x) 0.612 (1.0x)

Non-Match 1.958 (1.0x) 1.888 (1.0x) 1.840 (1.0x)

Avg Match 0.410 (1.8x) 0.404 (1.5x) 0.425 (1.4x)

Non-Match 1.622 (1.2x) 1.520 (1.2x) 1.476 (1.2x)

Median Match 0.422 (1.8x) 0.423 (1.5x) 0.443 (1.4x)

Non-Match 1.662 (1.2x) 1.611 (1.2x) 1.556 (1.2x)

Min Match 1.414 (0.5x) 2.208 (0.3x) 2.160 (0.3x)

Non-Match 2.567 (0.8x) 3.107 (0.6x) 3.006 (0.6x)

Max Match 1.409 (0.5x) 2.186 (0.3x) 2.166 (0.3x)

Non-Match 2.564 (0.8x) 3.080 (0.6x) 3.010 (0.6x)

25th percentile Match 0.552 (1.4x) 0.557 (1.1x) 0.574 (1.1x)

Non-Match 1.781 (1.1x) 1.718 (1.1x) 1.661 (1.1x)

75th percentile Match 0.552 (1.4x) 0.560 (1.1x) 0.581 (1.1x)

Non-Match 1.781 (1.1x) 1.716 (1.1x) 1.668 (1.1x)

Optimal Match 0.354 (2.1x) 0.383 (1.6x) 0.382 (1.6x)

Non-Match 1.604 (1.2x) 1.501 (1.3x) 1.443 (1.3x)

Best template per comp Match 0.471 (1.6x) 0.170 (3.6x) 0.214 (2.9x)

Non-Match 2.173 (0.9x) 2.195 (0.9x) 2.121 (0.9x)

5 One template to rule them all: Fusing embeddings 83

embedding for an individual with respect to the current test images, as it min-
imizes the respective distance.

So far, it has been shown that using an average of 10 images significantly out-
performs using a single image as a template. Naturally, the question arises of
whether the accuracy will still increase if more images are used. Is there a limit
above which additional images will not further improve accuracy (Q2)?

We need a dataset with more images of the same person to answer this ques-
tion. For this purpose, we used the LFW dataset [94] as it contains hundreds of
images of the samepeople. In particular,we use the 5 people in the LFWdataset
whohavemore than 100 images. Two randomly selected images of these 5 peo-
ple are shown in Figure 5.7.

For each person, the embedding of the first image serves as the starting point.
Next, the embedding of the second image is extracted. The first point of each
plot in Fig. 5.8 represents the sum of the difference between these two embed-
dings. We then combine all previously used embeddings into our template. Af-
terward, we extract the embedding of the following image, calculate its dif-
ference from the template, and plot the value. We continue with this approach
until we used every available image.

Interestingly, it looks like a (fuzzy) inverse log function. Intuitively, thismakes
sense as new images initially contain a lot of new information, but after the
template consists of many aggregated images, a new image cannot provide as
much new information as in the beginning. Furthermore, there seems to be a
limit of roughly 50 images, after which the embedding does not change signif-
icantly anymore. Another aspect to point out is that the graph has some upticks.
After looking at the specific images that cause these effects, we see that they all
present a new variation of the face (either a new face angle or different acces-
sories).

Section 5.2 used images of the same person in different settings, such as dif-
ferent hairstyles, lighting, and location. The dataset mainly consists of frontal
images,with the person looking directly into the camera. Somemodern smart-
phonesprovide theability tounlock thephoneby rotating thephonearound the
head. This is probably used not only to detect the person’s liveness but also to

Figure 5.7: 2 exemplary images of the LFW dataset of the 5 people with more
than 100 images.

5 One template to rule them all: Fusing embeddings 84

Figure 5.8: Numeric embedding differences shown for 2 people from the LFW
dataset.

increase the amount of information gained from the camera. Is the difference
in angle from this type of recording enough to utilize the benefit of combining
embeddings discussed so far (Q3)?

Therefore, we did a similar analysis on a different dataset: Pan Shot Face
Database (PSFD) [64]. This dataset features 30 participants from 9 perspec-
tives. Every perspective contains 5 look directions (straight, slightly top left,
slightly top right, slightly bottom right, and slightly bottom left) and 4 distinct
facial expressions (normal, smiling, eyes closed, and mouth slightly opened).
This gives us 5,400 images to work with.

For thefirst test,weused all imageswith anormal face expression as a template
andevaluated its averagedistance to all other images. The result is visible in the
PS-Normal row in Table 5.1.

People in this dataset are easier recognized compared to the CelebA dataset,
which is reflected ina loweraveragedistance (Table5.1). For theCelebAdataset,
the template which consists of 10 images is performing 1.8 times better than if
only a single image is used as template. Interestingly, this improvement is in
the same order of magnitude on our new dataset: 1.5 times better.

Images are professional portrait photographs (e.g., used as profile images) of
the subject to simulate real-world templates. In the second scenario, tem-
plates are created with images of the smiling person. The outcome of this PS-
Smile setting is not significantly different from the original PS-Normal setting
(c.f. Table 5.1). Thus, it does not make a significant difference in the person’s
facial expression while creating template images.

5.4 Single setting performance

In our experiments so far, we used images of the same people in different set-
tings, as these are the most common images provided by available datasets. In
practice, however, it is convenient for both the provider and the individual to
only use images taken at the time of physical enrollment. The provider would
benefit by ensuring that the individual is not spoofing the system, e.g., by us-

5 One template to rule them all: Fusing embeddings 85

ing images from other people 1—whichwould break security guarantees for all
kinds of authentication systems, both with publicly issued credentials such as
passports and with accounts enrolled with only a single (e.g., building access
control) system. The advantage for the user is better usability, as they do not
have to provide any additional data besides their participation in the enroll-
ment procedure. With enrollment interaction limited to a few seconds, we ar-
gue that creatingamorediverse set of input face images to improve recognition
accuracy as proposed in this chapter takes less effort than creating a traditional
user account by setting a new password.

Unfortunately, there arenopublicly available datasets that systematically con-
tain both images of people in the same setting (e.g., only rotating the head, as
performed for some mobile phone face authentication implementations) and
also images in different settings. In order to test our hypothesis of only us-
ing a single setting while additional images of the same person in different
settings do not increase accuracy, we created a new dataset, which we called
In-The-Wild Face Angle Dataset. We will also use this dataset to answer Q4. In-
spired by Datasheets for Datasets [68], we describe the dataset on our website:
digidow.eu/experiments/face-angle-dataset.

DatasetTo facilitate further research, this dataset is available as open source.
However, due to legal and ethical considerations, access is granted only
after signing an agreement. The agreement and further information can
be found at digidow.eu/experiments/face-angle-dataset

In order to test the increased performance ifmultiple images recorded in a sin-
gle sessionareused,we calculateda rollingaverageof the template images. The
first data point for each person is equal to the first embedding. The second data
point is the average of the first two embeddings. The last data point is the av-
erage of all embeddings of this particular person.

In order to quantify the performance, the 10 images of each person in different
settingsarenotusedas template images. Instead, theaveragedistancebetween
the rolling average of the template images and test images is calculated.

The average distance between each person’s first image and their test images
is, on average, 0.699. If we use not only the first image but the average of
all template images, the average distance drops significantly to 0.291. Fig. 5.9
shows the average plot of a person.

Interestingly, this opposes the previous findings as the distance grows smaller
even after the limit of roughly 50 images. We argue that this is due to the fact
that not the amount of images, but the amount of semantically different im-
ages are important.

1Note that providing wrong or even specifically manufactured images to the enrollment process
could have multiple goals: in addition to the apparent enrollment of a set of images containing
faces of two or multiple persons to make them all recognized as a single system user, mali-
cious users might try to attack the embedding computation or matching approaches directly
by exploiting model weaknesses through specifically tampered input. The exact attack vector
is outside the scope of this chapter, as our proposed collection of multiple images in a single,
controlled enrollment session is assumed to prevent both targets at once.

https://digidow.eu/experiments/face-angle-dataset
https://www.digidow.eu/experiments/face-angle-dataset/

5 One template to rule them all: Fusing embeddings 86

Figure 5.9: Rolling distance average of the aggregated embedding to the test
images. The y-axis shows the average distance to the test images
(orange→ greedy search; blue→ ordered).

Table 5.2: This table shows the average distance if only a subsection of the
training images are used.

Used images Distance

All images (117-463) 0.291

Every 10th image (11-46) 0.294

Every 20th image (5-23) 0.297

Every 50th image (2-9) 0.325

1 image 0.699

To verify this, we ran the same experiment but used only every nth image as
a template image. The results are shown in Table 5.2: The distance decreases
if more images are used (all images: 0.291, n = 10: 0.294, n = 20: 0.297,
n = 50: 0.325, single image: 0.699). However, distance improvements are cer-
tainly not linear and are leveling off at some point. The improvement from us-
ing just a few images is only marginally better than using hundreds of images,
suggesting that the number of images plays a minor role.

If the improvement best seen in Fig. 5.5 is due to having different face angles,
we expect a similar improvement if we switch from using dozens to just a few
images picturing different angles. Therefore, instead of using the template im-
ages in sequence, a greedy search on every iteration should result in the best
embedding for each step. At every step, we create the new average embedding
for all remaining images of the person, calculate the new distance to the test
images, and select the one that minimizes this distance. Table 5.3 shows that
after using just the 3 best images, accuracy already improved significantly, and
there is little room for improvement (0.315 for the 3 best images vs 0.291 if all

5 One template to rule them all: Fusing embeddings 87

Table 5.3: This table shows the average distance if images have been selected
greedily.

After n-th best images 1 2 3

Avg. distance 0.571 0.370 0.315

images are used). After manually inspecting the top images for each person, in
82 % of the cases, the first 3 images are one frontal image and two profile im-
ages from each side. Further work could add convergence criteria to select the
best amount of images automatically.

5.5 Related work

Chowdhury et al. [35] proposed an interesting change: Instead of using the
mean-weighting of features, they propose to use the maximum instead. This
should reduce the overfit on dominant angles and generalize better [35]. How-
ever, this finding could not be replicatedwith this dataset, as theminimum and
maximum settings performsignificantlyworse than the baseline (c.f. Table 5.1).
One potential cause for this bad performance is that outliers have too much
impact on the final template. Therefore, we created another template by using
{25, 75}th quantile of each dimension of the embedding, which scores signifi-
cantly better than both theminimum andmaximum setting, but not as well as
the average aggregation strategy.

Rao et al. [169] created a pipeline with a similar goal. Instead of aggregating
the embeddings into a single template, they created a neural network that re-
ceives raw images as input. As the networks have full access to thewhole image
(instead of an embedding only), this approach offers the possibility of higher
accuracy at the drastic expense of runtime performance and is thus not really
suitable for embedded systems.

Furthermore, in the last years, much effort is spent on deciding how to weigh
different dimensions of embeddings [124, 171, 230]. Even though some of these
approaches look promising, they are not ideal for embedded systems, as most
of them use additional hardware-intense computations. Therefore, this work
does not favor any specific image over another.

Balsdon et al. [13] showed that the accuracy of humansdoing face identification
significantly improves in a “wisdom of crowd” setting compared to individ-
ual’s performance. This indicates, that a similar effect is demonstrable if a sys-
tem combines embeddings not only from a single face recognition neural net-
work but also from multiple different ones. Therefore, further work could use
the proposed method of combining embeddings of different neural networks,
potentially using the same aggregation strategies as analyzed in the present
chapter.

5 One template to rule them all: Fusing embeddings 88

Summary

In thiswork,weevaluateddifferentaggregationstrategies, concluding that ag-
gregating embeddings by taking the average of each dimension provides the
highest improvement in accuracy while remaining compatible with state-of-
the-art face recognition pipelines as already widely deployed in the field. We
stress that this was one of the design goals of our work. Our results indicate
that such improvements can be directly applied to existing (embedded anddis-
tributed) systemswith changes to only the enrollment and template computa-
tion processes, but not the live recognition pipelines.

Even though some previous work implicitly used this average aggregation
strategy, its effectiveness has not been evaluated. We base this proposal on
an extensive evaluation of different aggregation strategies using both differ-
ent public datasets and creating a new dataset which is publicly available for
research purposes. After quantitatively analyzing the number of images used
to generate templates, we find that it only plays a minor role, while different
perspectives—we refer to them as semantically different input—significantly
improve the performance of face recognition pipelines. For an efficient, decen-
tralized system,wepropose using (just) 3 images per template: one frontal im-
age and one from each side. These images may share the same setting; thus, if
there is a physical enrollment, these images can be taken live. This increases
both the system’s correctness (as there are fewer options to spoof it) and its
usability (as the user does not have to provide larger sets of images or even
video footage).

Chapter 6

The speed of sight: Optimizing face
detection for embedded systems

Real-world
(Chapter 8)

Application
(Chapter 7)

Sensor
(Chapter 6)

Person
representation

(Chapter 5)

Embedding

Parts of an
embedding
(Chapter 3)

Efficiency
(Chapter 4)

FoundationThe foundation of this chapter is the following paper:
Hofer, Philipp, Philipp Schwarz, Michael Roland, and René Mayrhofer.
2023. Face to Face with Efficiency: Real-Time Face Recognition Pipelines
onEmbeddedDevices. In21st International ConferenceonAdvances inMobile
Computing & Multimedia Intelligence (MoMM 2023). ACM, Bali, Indonesia,
(December 2023)

Building upon the foundations laid in earlier chapters, which focused on un-
derstanding, optimizing, and combining facial feature embeddings, this chap-
ter transitions to addressing the practical challenges and solutions for imple-
menting these optimized systems on embedded hardware. This progression
from theoretical optimization to practical application is essential for ensuring
the viability of face recognition systems in real-world, resource-constrained
environments.

Real-time face recognition on decentralized systems and embedded hard-
ware presents numerous challenges, with the primary issue being the trade-
off between accuracy and inference-time on constrained hardware resources.
Achievinghigher accuracy often results in longer inference times,which can be

89

6 The speed of sight: Optimizing face detection for embedded systems 90

impractical for applications requiring quick responses. Therefore, optimizing
this trade-off is crucial for the feasibility of real-time applications.

To address this challenge, we first conduct a comparative study on different
face recognition distance functions and introduce an inference-time/accuracy
plot. This plot provides a clear visual representation to facilitate the compari-
sonofdifferent face recognitionmodels. It helps to identify theoptimal balance
between inference-time and accuracy based on specific application needs.

Building on these insights, we propose a combination of multiple models
with distinct characteristics. This approach leverages each model’s strengths
while mitigating its individual weaknesses, thereby optimizing performance
for diverse application requirements. The integration of these models aims to
achieve a balance of accuracy, reliability, and speed.

We demonstrate the practicality of our approach by developing a multimodel
face recognition pipeline. This pipeline utilizes two face detection models po-
sitioned at opposite ends of the inference-time/accuracy spectrum. By strate-
gically integrating these models on an embedded device, we achieve a balance
where the more accurate model is used only when necessary, and the faster
model is employed for generating quick proposals. This method improves the
trade-off between inference-time and accuracy, providing a practical guide-
line for developing real-time face recognition systems on embedded devices.

6.1 Intricacies of SOTA face pipelines

Authenticating a person using biometrics requires twomain steps: face detec-
tion, followed by face recognition (c.f. Section 3.1). In this section, we iterate
over state-of-the-artmodels to improve timeperformance (onembeddedsys-
tems). First, the system must accurately detect and locate the face within the
image or video frame. Once the face is detected, the system can then extract the
relevant facial features necessary for recognition. Recognition involves com-
paring these features to a database of known faces to determine the individ-
ual’s identity. Therefore, accurate detection and recognition are essential for
effective and reliable biometric authentication.

To quantify the performance of our face detection models, we employed the
LFWdataset, which provides a diverse and challenging set of facial images that
are well-suited for benchmarking recognition accuracy and robustness. A de-
tailed description of this dataset can be found in Section 2.2.4. For evaluation,
we adopted ametric where a predicted bounding box is considered successful if
it overlapsbymore than50%with theground truthboundingbox.This thresh-
oldwas chosendue to itswidespread acceptance andeffectiveness in accurately
reflectingmodel performance, as evidenced in studies such as Yang et al. [232].
Byutilizing this establishedmetric,we ensured a robust and consistent quanti-
tative assessment, facilitating a reliable accuracy comparison across different
face detection models. This methodological choice aligns with standard prac-
tices in the field, enhancing our results’ validity and comparability.

6 The speed of sight: Optimizing face detection for embedded systems 91

6.1.1 Face detection

With the increasing demand for facial recognition technology, a wide variety
of face detection models have been developed. Each model has certain advan-
tages over their competitors: Some focus on finding tiny faces [115], occluded
faces [111], or using multiple camera angles [61].

In order to quantify the quality of networks and be able to compare different
models, they are evaluated on publicly available datasets. There is a focus on
accuracy: Wider Face [232] shows a precision-recall curve, LFW [159] shows
the ROC-curve and the corresponding area under the curve, VGGFace2 [27]
shows false(-positive)-acceptance-rates and rank-accuracies,UMDFaces [14]
shows the normalized mean error.

In this section,wewill provide a brief overview of (four) popular choices of face
detection networks.

Retinaface

Retinaface is based on a single-shot detector framework and uses a fully con-
volutional neural network (FCN) to detect faces in images. The architecture of
Retinaface consists of three main components: a backbone network, a multi-
scale feature pyramid network, and three task-specific heads.

The backbone network is responsible for feature extraction and is typically a
pre-trained ResNet or MobileNet. The feature pyramid network then takes the
feature maps generated by the backbone network and produces a set of multi-
scale feature maps. Finally, the task-specific heads, consisting of a classifica-
tion head, a regression head, and a landmark head, are applied to each feature
map topredict thepresenceof a face, its boundingbox, and its facial landmarks.

ULFGFD

ULFGFD is specifically designed to be lightweight and suitable for deployment
on edge computing devices. The small size, just over 1 MB, stands out in par-
ticular. The network is based on a single-shot detector (SSD) architecture and
consists of a backbone and prediction networks. The backbone network is a
lightweight MobileNetV2 architecture that is used to extract features from in-
put images.Thepredictionnetworkconsistsof a setof convolutional layers that
are used to predict the bounding boxes and confidence scores of faces in the in-
put images.

ULFGFD also uses a feature pyramid network (FPN) to detect faces at different
scales. The FPN consists of a set of convolutional layers that are used to gener-
ate feature maps at different resolutions. These feature maps are then used to
predict the bounding boxes and confidence scores of faces at different scales.

6 The speed of sight: Optimizing face detection for embedded systems 92

YuNet

is a deep neural network architecture designed for efficient face detection and
recognition in real-world scenarios [62].

YuNet is composed of three main components: a lightweight backbone net-
work, a feature pyramid network (FPN), and a detection head. The backbone
network is based on MobileNetV2, a popular architecture known for its effi-
ciency and low computational cost.

The detection head of YuNet is responsible for predicting the locations of faces
in the input image. It consists of a set of convolutional layers followed by two
parallel branches. One branch performs classification to determine whether a
given region of the image contains a face or not, while the other branch per-
forms regression to predict the face’s bounding box coordinates.

Haarcascade

is a widely used computer vision algorithm for face detection, having been in-
troducedbyViola and Jones as early as 2001 [217]. Despite being around for over
two decades, Haarcascade remains a popular choice for face detection in vari-
ous applications due to its simplicity, efficiency, and effectiveness.

TheHaarcascade algorithmworks by using a series of classifiers to detect faces
within an image. Each classifier is composedof a set ofweak learners,whichare
typically decision trees that evaluate simple features such as edges and corners.
These features are calculated on a slidingwindow thatmoves across the image,
with the goal of detecting faces at different scales and orientations.

One limitation of Haarcascade is that it can be sensitive to changes in lighting
conditions and occlusion, which can result in false positives or missed detec-
tions.

6.1.2 Face recognition

Face recognition is the process of identifying an individual based on their dis-
tinctive facial features. In recent years, the accuracy, reliability, and efficiency
of this process have increased significantly due to advancements in deep learn-
ing algorithms and the availability of large datasets.

The majority of state-of-the-art (SOTA) algorithms requires a pre-processed
RGB image as input, which is then used to create a high-dimensional vector
that represents the individual’s facial features. To ensure that the images are
properly pre-processed, it is necessary to use landmarks from the individual’s
face. Typically, these landmarks consist of the eye, nose, and mouth points,
which are used to ensure that the image is aligned correctly and scaled.

We tested a single instance of a state-of-the-art face recognition model for
our pipeline. This decision was based on two factors: the model’s negligi-
ble inference-time compared to face detection and its near-perfect accuracy.
Therefore, our primary focus was not on selecting the best-performing face
recognition model but optimizing the pipeline’s overall efficiency.

6 The speed of sight: Optimizing face detection for embedded systems 93

Arcface

Arcface [51] is a SOTA face recognition method that uses a neural network-
based approach to extract discriminative features from faces. The technical de-
tails of Arcface include amodified ResNet architecture with a large embedding
size, a novel angular softmax loss function, and specific optimization tech-
niques. The ResNet architecture consists of several convolutional layers, which
extract features from the input face image. The embedding size of Arcface is a
512-dimensional floating point array.

Arcface is trained using a custom loss function (Arcface loss), based on cosine
similarity between features because it enforces more inter-class discrepancy.
Different distance functions are used for comparing two embeddings in prac-
tice. Typically, the L2 loss function is used as distancemeasurement. However,
in certain applicationsdifferentdistance functions arepreferable. For example,
a zero knowledge proof might need an inner product for efficient calculation,
therefore cosine distance might be the preferred function.

6.2 State-of-the-art face recognition pipeline

The typical SOTA setup for image-based face recognition consists of the fol-
lowing components:

Camera→ Detection→ Recognition→ Comparison

The size of the retrieved camera image heavily influences the inference time.
We assume that the camera produces 4k images. In alignment with Sec-
tion 3.1.3, for the default pipeline, we use Retinaface [50] as face detection
model and Arcface [51] as face recognition model.

Two embeddings are compared using a distance function. There has been no
study on the impact of using different distance functions during inference.
Therefore,we evaluated the impact of three popular distancemetrics usedwith
Arcface, namely absolute, L2, and cosine distance. We calculated the embed-
dings of the 6,000 test image-pairs from the LFW dataset and followed their
protocol to verify the accuracy of Arcface using different distance metrics.

The precision-recall plot presented in Fig. 6.1 indicates onlyminor differences,
which are only visible if we zoom in on the plot. The inference time is not af-
fected significantly either; our benchmark indicates roughly 1 µs computation
time for all three variants (L2: 1.0939µs± 3.9ns, Cos-Dist: 1.1549µs± 20.9ns, ab-
solute: 1.0956µs± 8.6ns)1.

DecisionOur findings reveal that the choice of distance metric does not have a sig-
nificant effect on the analysis outcome. Thus, due to popular use, the L2
norm is used for the rest of this thesis.

1Timing information has beenmeasured with criterion (https://docs.rs/criterion)

https://docs.rs/criterion

6 The speed of sight: Optimizing face detection for embedded systems 94

0.96 0.96 0.97 0.97 0.98 0.98 0.99 0.99 1

0.6

0.8

1

Precision

R
ec
al
l

Abs
L2

Cos-Dist

Figure 6.1: Different distance functions for Arcface. Notice themagnified scale;
plotting the whole spectrum (0-1) would yield no discernible dis-
tinction. The green line is not visible, as using L2 and COS distance
functions yields an identical precision-recall curve. The Area Under
Curve (AUC) isnot significantly different either:AUCL2 = 0.99884653,
AUCABS = 0.9988512, AUCCOS = 0.99884653.

This gives us the following architecture for our default pipeline:

Camera︸ ︷︷ ︸
4k images

→ Detection︸ ︷︷ ︸
Retinaface

→ Recognition︸ ︷︷ ︸
Arcface

→ Comparison︸ ︷︷ ︸
L2 Norm

6.2.1 Performance baseline

In order to establish a baseline for the performance, we implemented the
pipeline in Rust using Tensorflow Lite (Retinaface and ULFGFD) and OpenCV
(YuNet andHaarcascade). All benchmarks are executed on a JetsonNano2, with
an NVIDIAMaxwell GPU and a Quad-core ARM Cortex-A57MPCore CPU.

There are two distinct performance metrics:

1. With respect to time: We established benchmarks using the Rust perfor-
mance measurement framework Criterion [76]. To ensure statistical sig-
nificance and reliability, each componentunderwent 100 iterations, and the
reported time is based on themedian of these runs. The variance is less than
4.8 % of the value for all components. It is noteworthy that the times re-
ported are calculated per image, with Retinaface requiring a total of 91 sec-
onds for inference.

Camera (4k)︸ ︷︷ ︸
0.02s

→ Retinaface︸ ︷︷ ︸
91s

→ Arcface︸ ︷︷ ︸
0.071s

→ Comparison︸ ︷︷ ︸
0.000028s

Retrieving the 4k image from the camera is possible at that frequency be-
cause hardware acceleration andMJPG compression are used.

2https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano/

https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano/

6 The speed of sight: Optimizing face detection for embedded systems 95

2. With respect to accuracy: We use the 6,000 face comparisons proposed by
LFW [159] and run the face recognition pipeline on it. If multiple faces are
found, the one closest to the center is used, as the LFW images are pre-
processed in that way. Retinaface manages to find all faces. As LFW pri-
marily features single-person portraits, this accuracy was expected. Arc-
face uses the best threshold on that dataset to decide if the two faces are
from the same person.

Camera (4k)→ Retinaface︸ ︷︷ ︸
100%

→ Arcface︸ ︷︷ ︸
99.3 %

→ Comparison

6.2.2 Baseline improvements

Time-performance (1.5 minutes per 4k image) is arguably too slow for real-
time performance. Most time (99.9 %) is spent on Retinaface. There are two
options to reduce the inference time:

1. Reduce the inputdimension,whichyields the following time-performance:

4k (3840x2160px): 91.24 s

Full HD (1920x1080px): 11.52 s

HD (1280x720px): 5.13 s

SD (640x480px): 1.72 s

How is accuracy-performance affected if input dimension is reduced? The
theoretical lower limit is detecting people of size 16 px x 16 px, as this is
the smallest anchor used by Retinaface. We tested if such small faces are
detected in practice. Starting with LFW’s image size of 250 px x 250 px, we
run our face recognition pipeline over all (test) images to determine the de-
tected face size. Subsequently, the images were scaled down by 50 pixels,
and the experiment was repeated until the image size was 50 x 50 px. The
resulting face sizeswere recorded. Fig. 6.2 illustrates thewidthsandheights
in pixels for detected faces. It is apparent that the smallest anchors are not
only used for sub-features (for use in higher levels of the FPN [119]), but
also to detect faces directly. Interestingly, the smallest detected face has a
dimension of 10 px x 14 px. This is smaller than the smallest anchor (16 px
x 16 px) and is possible because the network refines its predicted bounding
box in later stages.

Despite the successful detection of faces, there is no guarantee that the
image has enough information for face recognition to recognize a person.
Therefore, we created another experiment by performing the same shrink-
ing of the images as before. An embedding of the scaled down version of the
image is (L2) compared to the embedding of the full image. The results are
plotted in Fig. 6.3.

As anticipated, our analysis reveals a distinct threshold at approximately
40 x 30 pixels, beyondwhich facial recognition accuracy is substantially di-
minished.

6 The speed of sight: Optimizing face detection for embedded systems 96

1
0
–
1
8
.9

1
8
.9
–
2
7
.8

2
7
.8
–
3
6
.7

3
6
.7
–
4
5
.6

4
5
.6
–
5
4
.5

5
4
.5
–
6
3
.4

6
3
.4
–
7
2
.3

7
2
.3
–
8
1
.2

8
1
.2
–
9
0
.1

9
0
.1
–
9
9

4,000

5,000

6,000

7,000

Width of faces [px]

A
m
ou
n
to

ff
ac
es

1
4
–
2
2
.5

2
2
.5
–
3
1

3
1
–
3
9
.5

3
9
.5
–
4
8

4
8
–
5
6
.5

5
6
.5
–
6
5

6
5
–
7
3
.5

7
3
.5
–
8
2

8
2
–
9
0
.5

9
0
.5
–
9
9

0

2,000

4,000

6,000

Height of faces [px]

Figure 6.2: The sizes of detected faces using Retinaface. Sizes larger than 99
pixels are not displayed as our focuswas on identifying the smallest
detectable faces.

10
-1
4

15
-1
9

20
-2
4

25
-2
9

30
-3
4

35
-3
9

40
-4

4

45
-4

9

50
-5
4

55
-5
9

6
0-

6
4

6
5-
6
9

70
-7
4

75
-7
9

80
-8

4

85
-8

9
90

-9
4

95
-9

9

0

0.5

1

Width of face [px]

10
-1
4

15
-1
9

20
-2
4

25
-2
9

30
-3
4

35
-3
9

40
-4

4

45
-4

9

50
-5
4

55
-5
9

6
0-

6
4

6
5-
6
9

70
-7
4

75
-7
9

80
-8

4

85
-8

9
90

-9
4

95
-9

9

0

1

2

Height of face [px]

Figure 6.3: L2 distance to reference embedding (full size face) using different
face sizes (smaller is better).

6 The speed of sight: Optimizing face detection for embedded systems 97

Even though an image of SD quality still has an inference time of 1.7 sec-
onds, it skips 99.69% of potential input data (25,600 vs 8,294,400 pixels).

Wecancalculate the real-world impactof thisdimensionreduction. For this
calculation, we need a few hardware assumptions.

FacedimensionsBeing able to detect anobject dependson its size. Since
wewant to detect a face, we have to assume the dimensions. The USDe-
partment ofDefensemeasured thewidth (bitragionbreadth) andheight
(menton-crinion length) of the face to be between 12–15 cm and 15–21
cm, respectively [54]. We want to find the lower limit of face recogni-
tion pipelines possibilities. Therefore, we use the upper end of the face
dimension scale:

facewidth = 0.15m, faceheight = 0.21m

Camera For the camera, we assume a typical 70 mm focal length with a
full frame 35mm sensor:

camerafocallength = 0.07m

cameraimagewidth = 35mm, cameraimageheight = 24mm

Figure 6.3 demonstrates that facial recognition can reliably commence at
sizes as small as 40 x 30 pixels.

objectwidth = 30 px,objectheight = 40 px

Wecannowcalculate themaximumdistance inmillimeters of apersonwith
respect to the camera, such that the face is still recognizable:

distance =
camerafocallength × pixelwidth/height × facewidth/height

objectwidth/height × cameraimagewidth/height

If we use pixelwidth/height of 640 and 480 respectively, we can detect faces up
to 6.4m. With a pixelwidth/height of 3840 and 2880 this distance increases to
38.4m.

2. Use a different, more lightweightmodel. Due to the use of a large backbone
network (ResNet [75]) and its computationallyheavyuseof featurepyramid
networks [119], the inference time of Retinaface is slow. There are lighter
networks with fewer parameters, such as ULFGFD. Onemajor deficiency of
fast face detection algorithms is their tendency to produce false positives.
Retinaface, on the other hand, has been shown to have a very low false pos-
itive rate, making it a more reliable option for these types of applications.
Fig. 6.4 shows the self-reported confidence of the face of ULFGFD. The first
bar at x = 0 represents the 9.2% of the cases where ULFGFD does not detect
a face. 77 % of the images have a confidence of over 90%.

As face recognition expects a pre-processed image and this pre-processing
depends on the location of landmarks, it is not possible to calculate face
recognition accuracy with ULFGFD.

6 The speed of sight: Optimizing face detection for embedded systems 98

0
–
0
.1

0
.1
–
0
.2

0
.2
–
0
.3

0
.3
–
0
.4

0
.4
–
0
.5

0
.5
–
0
.6

0
.6
–
0
.7

0
.7
–
0
.8

0
.8
–
0
.9

0
.9
–
1

0

0.5

1
·104

Probability predicted by ULFGFD

A
m
ou
n
ti
m
ag
es

Figure 6.4: 77% of images have more than 90% probability.

6.3 Inference-time/accuracy tradeoff

The accuracy of face detection models has been extensively studied and re-
ported inmodern research (as demonstrated by the reportedmetrics described
in Section 6.1.1). However, an often overlooked aspect in the evaluation of these
models is their inference time. This information is important, as a slow infer-
ence time can lead to delays and long queues, compromising the effectiveness
of the system (cf. Section 6.2.1). Inference time can also impact the scalability
and cost-effectiveness of a face detection system, as a slowmodelmay require
morepowerful hardware or computing resources to achieve thedesiredperfor-
mance. Furthermore, inference time is especially important when considering
thedeploymentof facedetectionmodels onembeddedhardware. Thesedevices
oftenhave limited computing resources and requiremodels that canperform in
real-time.Therefore, evaluating facedetectionmodelsbasedon their inference
time is essential for ensuring that theycanbedeployedeffectivelyonembedded
hardware and meet the performance requirements of real-world applications.
Despite its importance in real-world deployment scenarios, none of the exist-
ing datasets currently available comprehensively address this aspect of perfor-
mance evaluation. As a result, there is a significant gap in our understanding of
the practical implications of face detection model performance in real-world
settings.

This chapter evaluates SOTA face detection models with respect to these met-
rics. We assessed the performance and accuracy of four face detection models,
Retinaface [50], ULFGFD [120], YuNet [62], and Haarcascade [217]. Figure 6.5
illustrates the space of performance-accuracy for current models. It is impor-
tant to note that only the networks situated at the border of the performance-
accuracy spectrumare relevant, and their selection depends on the specific ap-
plication requirements. Different applications may require different points on
the performance-accuracy spectrum, and our study provides insights into the
trade-offs involved in selecting an appropriate face detectionmodel for a given
application. Our results, depicted in Fig. 6.5, clearly show that Haarcascade has
a detection failure rate of over 50 %, even for the relatively simple portrait-
like datasets such as the LFW dataset. Retinaface achieves high accuracy but
requires high inference time, while ULFGFDhas lower accuracy but a faster in-
ference time.

6 The speed of sight: Optimizing face detection for embedded systems 99

0.1 1 10 100

0.631

1

Haarcascade

ULFGFD
YuNet

Retinaface

Inference Time [s per 4k image]A
cc
ur
ac
y
[a
cc
ur
ac
y
on

LF
W
da
ta
se
t]

Figure 6.5: Thefigure illustrates the trade-offbetween inference-time and ac-
curacy for various face detection networks. The x-axis represents
the inference time, while the y-axis represents the accuracy of the
networks. The solid line in the figure represents the Pareto fron-
tier, which is the optimal trade-off between accuracy and inference
time.

6.4 Fast and accurate face recognition pipeline

In order to optimize face detection for both speed and accuracy, we propose an
approach that combines two algorithmswith distinct characteristics in the in-
ference/time spectrumtoharvest the strengthsof each. A fast algorithm isused
as a proposal generator to create possible face detections quickly. We prioritize
minimizing false negatives in the proposal generator, as the subsequent algo-
rithm can verify false positives. While our analysis shows Haarcascade to be
the fastest method, it misses more than half of the faces, even in the easy LFW
dataset. Therefore, we use ULFGFD as our algorithm for generating proposals.
These proposals are then confirmed and augmented with face landmarks by a
more accurate algorithm, Retinaface. This yields the following pipeline:

Camera (4k)→ ULFGFD→ Retinaface→ Arcface→ Comparison

Asdiscussed inSection6.2, face recognition requires facedimensionsof at least
30 px x 40 px. We recommend using face images with dimensions of 50 px x 65
px or larger to achieve higher accuracy. Our experimental results indicate that
performance degrades when face images are smaller than this threshold.

As the pipeline should take bounding box errors of ULFGFD into account, we
performed a systematic search on a grid of possible dimensions and performed
additional benchmarks on Retinaface with respect to inference time:

150 px x 150 px: 0.169 s

125 px x 125 px: 0.093 s

100 px x 100 px: 0.052 s

75 px x 75 px: 0.038 s

6 The speed of sight: Optimizing face detection for embedded systems 100

50 px x 50 px: 0.018 s

Subsequently,weconstructed thecompletepipelineandevaluated theaccuracy
of each individual component as follows:

Camera (4k)→ ULFGFDth=0.05︸ ︷︷ ︸
96.45%

→

Retinaface50x50︸ ︷︷ ︸
73.2 %

Retinaface75x75︸ ︷︷ ︸
86.1 %

Retinaface100x100︸ ︷︷ ︸
98.3 %

Retinaface125x125︸ ︷︷ ︸
98.9%

Retinaface150x150︸ ︷︷ ︸
99.7 %

→

Arcface︸ ︷︷ ︸
92.3 %

Arcface︸ ︷︷ ︸
95.3 %

Arcface︸ ︷︷ ︸
97.3 %

Arcface︸ ︷︷ ︸
97.7 %

Arcface︸ ︷︷ ︸
98.3 %

→ Comparison

A size of 100pxx 100px for theRetinaface input is a good tradeoffbetween time
and accuracy performance. With this, the entire pipeline runs on ∼ 4.7 FPS on a
Jetson Nano and achieves an overall accuracy of 92.3 % (0.9645 × 0.983 × 0.973)
on the LFW dataset.

Next, we can calculate both the inference time and accuracy of the entire
pipeline with these three combinations of networks and compare them to ex-
isting algorithms. Fig. 6.6 clearly demonstrates that by integrating multiple
different networks, the trade-off border in the inference-time/accuracy spec-
trum is increased and a better balance between these two metrics is achieved.
This indicates the effectiveness of our approach in improving face detection
performance.

Notably, the selection of suboptimal parameters, as observed in Fast50 and
Fast75, can lead to an unexpected outcomewhere the desired effect is inverted.
Specifically, thismay result in a decrease in accuracy despite a slower inference
time. Therefore, it is crucial to carefully select appropriate parameters by uti-
lizing techniques such as analyzing the inference-time/accuracy plot to ensure
the desired performance outcome is achieved.

Summary

Real-time face recognition particularly for applications in decentralized sys-
tems without large GPU clusters comes with several challenges, including the
trade-off between accuracy and inference-time on constrained hardware re-
sources. Achieving higher accuracy is desirable, but it often comes at the cost
of longer inference-time, which is particularly problematic for embedded de-
vices with limited processing power.

We first conduct a comparative study on different face recognition distance
functions to address this challenge and introduce an inference-time/accuracy
plot. We propose, that future datasets and models should include inference
time as ametric for performance evaluation. Thiswill allow researchers to bet-
ter understand the trade-offs between accuracy and efficiency in real-world

6 The speed of sight: Optimizing face detection for embedded systems 101

0.1 1 10 100

0.631

1

Fast75

Fast125Fast100

Haarcascade

ULFGFD

Fast150 Retinaface

Haarcascade

Retinaface

Fast50

Inference Time [s per 4k image]A
cc
ur
ac
y
[a
cc
ur
ac
y
on

LF
W
da
ta
se
t]

Figure 6.6: This plot adds our proposed models to the initial plot of Fig. 6.5,
which is represented by the dashed line. As visualized in the solid
line, our proposed Fast100, Fast 125, and Fast150 networks increase
the Pareto front in the inference-time/accuracy spectrumFast50 and
Fast75 do not increase the border, as they are slower and have less
accuracy than ULFGFD.

deployment scenarios, and enable the development of more effective and effi-
cient face detectionmodels that can be deployed in real-world applications. By
including inference time as a metric, the practical relevance of face detection
research is improved andmodels can be optimized for real-world deployment.
We also introduced an inference-time/accuracy plot that enables the compar-
ison of different face recognition models. Our analysis showed that different
models have different strengths and weaknesses, and every application must
strike a balance between inference-time and accuracy, depending on its focus.

To achieve optimal performance across the spectrum, we proposed a combi-
nation of multiple models with distinct characteristics. This approach allows
the system to address the weaknesses of individual models and optimize per-
formance based on the specific needs of the application. We demonstrated the
practicality of our proposed approach by developing a multimodel face recog-
nition pipeline. We utilized two face detection models positioned at either end
of the inference-time/accuracy spectrum to achieve superior overall accuracy,
reliability, and speed. Specifically, we employed the more accurate model only
whennecessaryand the fastermodel forgenerating fastproposals, thereby im-
proving the trade-off between inference-time and accuracy.

Overall, our proposedpipeline can serve as a guideline for developing real-time
face recognition systems on embedded devices. By striking an optimal balance
between theperformanceofdifferentmodels,we can improve theoverall accu-
racy, reliability, and speed of such systems and demonstrate this in Chapter 8.

Chapter 7

Biometric Domain Specific Sensor
Language (BioDSSL)

Real-world
(Chapter 8)

Application
(Chapter 7)

Sensor
(Chapter 6)

Person
representation

(Chapter 5)

Embedding

Parts of an
embedding
(Chapter 3)

Efficiency
(Chapter 4)

FoundationThe foundation of this chapter is the following paper:
Hofer, Philipp, Philipp Schwarz, Michael Roland, and René Mayrhofer.
2024. BioDSSL:ADomainSpecificSensorLanguage for global, distributed,
biometric identification systems. In 12th IEEE International Conference on
Intelligent Systems (IEEE IS 2024). IEEE, Golden Sands, Bulgaria, (August
2024)

Building upon the theoretical advancements and practical implementations
discussed in previous chapters, we transition from optimizing face detec-
tion for embedded systems in Chapter 6 to the development of an application
framework. Chapter 6 highlighted the challenges and solutions for efficient
real-time face recognition on resource-constrained hardware, establishing a
foundation for practical deployment. Now, we introduce BioDSSL, a Domain
Specific Sensor Language, which enhances the flexibility and efficiency of in-
tegrating multiple biometric modalities. This chapter bridges the gap between
optimized facial feature processing and the dynamic management of various
biometric sensors, enabling more robust and adaptable authentication sys-
tems.

102

7 Biometric Domain Specific Sensor Language (BioDSSL) 103

As biometric identification systems becomemore ubiquitous, their complexity
is increasing with the integration of additional sensors, aimed at minimizing
error rates. The current paradigm for these systems involves hard-coded ag-
gregation instructions, presenting challenges in system maintenance, scala-
bility, and adaptability. These challenges become particularly prominent when
deployingnewsensorsor adjusting security levels to respond to evolving threat
models.

To address these concerns, this research introduces BioDSSL, a Domain Spe-
cific Sensor Language to simplify the integration and dynamic adjustment of
security levels in biometric identification systems. Designed to address the in-
creasing complexity due to diverse sensors andmodalities, BioDSSL promotes
system maintainability and resilience while ensuring a balance between us-
ability and security for specific scenarios.

Furthermore, it facilitates decentralization of biometric identification sys-
tems, by improving interoperability and abstraction. Decentralization inher-
ently disperses the concentration of sensitive biometric data across various
nodes, which could indirectly enhance privacy protection and limit the poten-
tial damage from localized security breaches. Therefore, BioDSSL is not just a
technical improvement, but a step towards decentralized, resilient, and more
secure biometric identification systems. This approach holds the promise of
indirectly improving privacywhile enhancing the reliability and adaptability of
these systems amidst evolving threat landscapes and technological advance-
ments.

7.1 Complexity and rigidity of current systems

There are various types of biometric identification systems, leveraging diverse
biological features. Some of the most common include fingerprint, facial, iris,
and voice recognition. They are utilized for a wide range of applications, such
as tracking students’ attendance [90], opening doors [134], facilitating con-
tactless payments for public transport tickets [30, 215], and even streamlining
border control processes [113] (cf. Fig. 7.1).

As biometric traits are distinctive and unalterable, the potentialmisuse of such
data raises significant privacy and security concerns. Furthermore, the com-
plexity of integrating diverse sensors and modalities, along with the need for
dynamic security levels, presents additional challenges in the development,
deployment, andmaintenance of these systems.

As biometric identification systems have become more pervasive, their com-
plexity has escalated, primarily due to the integration of a variety of sen-
sors [126, 163] and modalities [34, 185], all intended to minimize error rates
and enhance system reliability. Each of these sensors and modalities comes
with its own specifications, requirements, and compatibility issues, which in-
creases the intricacy of these systems.

While hard-coded instructions were suitable for initial generations of biomet-
ric systemswitha limitedsetof sensorsandmodalities, it is inflexible andchal-
lenging for more sophisticated systems. This rigidity is especially problematic

7 Biometric Domain Specific Sensor Language (BioDSSL) 104

Sensors

Verifier

Open doors

Track students' attendance

Pay for public transport ticket

Cross country-borders

Face

Face

Face

Gait

FP

...

Figure 7.1: This figure shows the architecture overview of biometric systems,
with examples of different sensors (face, gait, and fingerprint-
recognition). The sensors capture biometric data from people and
send that representation (most commonly in form of a high-
dimensional vector) to a verifier. The verifier receives this informa-
tion from one or more sensors and can then decide to trust these
sensings enough to perform an action.

when it comes to deploying new sensors or modifying system parameters to
adapt to evolving threat landscapes or security requirements.

Further compounding the issue is the lack of a standardized, easy-to-use
framework for integrating new sensors or adjusting system parameters. This
lack makes it difficult for system developers and administrators to maintain,
scale, and adapt their systems, leading to increased costs, longer deployment
times, and potential vulnerabilities.

7.2 Proposed solution: BioDSSL

Given the growing complexity and rigidity of current biometric identification
systems, there is a clear need for a more dynamic, adaptable, and scalable so-
lution. To this end, we propose BioDSSL. One of the key advantages of BioDSSL
is its ability to handle diverse sensor readings fromvariousmodalities. This al-
lows for amore unified and efficient operation of biometric identification sys-
tems, regardless of the range of sensors and modalities they incorporate. By
abstracting away the complexities of sensor integration and system configu-
ration (Section 7.5.2), BioDSSL has the potential to reduce the time and effort
required for systemmaintenance, while also improving scalability and adapt-
ability in certain scenarios.

In the sections that follow, we focus on the concept and design principles of
BioDSSL, explore its unique features and advantages, anddiscusshow it fosters

7 Biometric Domain Specific Sensor Language (BioDSSL) 105

decentralization in biometric identification systems.

7.3 Scope and goals

The primary objective of this chapter is to introduce BioDSSL and examine its
potential role in enhancing the flexibility and security of biometric identifica-
tion systems. The scope of our study includes an exploration of the design and
features of BioDSSL, as well as an examination of how it addresses some of the
current challenges faced by these systems.

We focus on the details of BioDSSL, discussing its concept, design principles,
and approach towards decentralization of biometric identification systems.We
further describe the unique features of BioDSSL as a tool in the biometric iden-
tification landscape, underlining its ability to simplify the integration of new
sensors and dynamic adjustments of security levels (Section 7.5).

Furthermore, we focus on the practical implementation of BioDSSL (c.f. Sec-
tion 7.6),while providing a detailedmethodology, including steps for integrat-
ing new sensors and dynamically adjusting security levels using BioDSSL. This
allows to balance usability and security as crucial elements for the efficient op-
eration of biometric identification systems.

Moreover,we present case studies and experimental results demonstrating the
efficacy of BioDSSL (Section 7.7). These real-world scenarios and experimental
setups provide valuable insights into the practical application and advantages
of BioDSSL. Additionally, quantitative and qualitative analyses of the results
are provided to substantiate the improvements BioDSSL brings to biometric
identification systems.

Lastly, we consider BioDSSL’s impact on privacy and security (Section 7.8).
Through this chapter, we aim to contribute to the ongoing dialogue about en-
hancing the flexibility, security, and efficiency of biometric identification sys-
tems.

7.4 Traditional approach

In this section, we focus on the historical context, evolution, and complexi-
ties surrounding the field of biometric identification systems (Section 7.4.1).
We explore the role of diverse sensors and modalities in enhancing the ro-
bustness and accuracy of these systems (Section 7.4.2). We then address the
challenges inherent in the present systems, detailing how their complexity
and rigid structure makes system maintenance, scalability, and adaptabil-
ity burdensome (Section 7.4.3). This section also reviews previous attempts
at resolving these issues, drawing attention to their limitations and the gaps
they leave unaddressed (Section 7.4.4). The collective understanding from this
background study sets the stage for the introduction of our proposed solution
to these challenges.

7 Biometric Domain Specific Sensor Language (BioDSSL) 106

7.4.1 Evolution of biometric identification systems

Biometric identification systems have come a long way since their inception,
evolving frombasic systemswith limitedcapabilities to sophisticatednetworks
capable of handling multiple modalities and sensors. The earliest biometric
systems were simple, employing single modality biometrics such as finger-
prints or facial features for identification. As the technology advanced, these
systems saw improvements in their speed, accuracy, and reliability. However,
they remained largely static and rigid in their design, with fixed security levels
and little flexibility to integrate new sensors or adjust to evolving threat land-
scapes.

In the last decade, the focus has shifted towards multi-modal biometric sys-
tems that integrate multiple biometric traits for more accurate and reliable
identification [1, 34, 112, 179, 185, 226]. This shift has been driven by advances
in sensor technology and computing power, alongwith the increasing need for
robust and secure identification systems.

While these advancements have significantly enhanced the capabilities of bio-
metric systems, they have also introduced new challenges. The integration of
diverse sensors and modalities has made these systems more complex. Ad-
ditionally, the increasing concentration of sensitive biometric data has raised
privacy and security concerns.

7.4.2 Diverse sensors andmodalities in biometrics

As discussed in the previous section, biometric identification systems have
evolved to incorporatemultiple sensors andmodalities, enhancing their accu-
racy and reliability. This section focuses on the diversity of sensors andmodal-
ities currently employed in these systems.

Biometric sensors can be broadly classified into two categories: physiological
and behavioral [45]. On the one hand, physiological sensors capture biometric
traits such as fingerprints [100], face [162], iris [168], and palm prints [253],
which are inherent to an individual and remain relatively stable over time. On
the other hand, behavioral sensors capture traits such as voice [4], gait [218],
and typing rhythm [5], which are unique to an individual but can vary based on
factors like mood or health.

As formodalities, single-modal biometric systems use one sensor type to cap-
ture one biometric trait, while multi-modal systems usemultiple sensor types
to capture multiple biometric traits. Multi-modal systems offer several ad-
vantages over single-modal systems, including increased robustness to noise,
greater resistance to spoofing, and improved identification accuracy [153].

However, the integration of diverse sensors and modalities in biometric sys-
tems is not without its challenges. Each sensor and modality has its own spe-
cific requirements and complexities, including different data formats, vary-
ing levels of sensitivity, and distinct comparison protocols. Furthermore, the
dynamic nature of behavioral biometrics introduces additional layers of com-
plexity, requiring systems to be adaptable and flexible.

7 Biometric Domain Specific Sensor Language (BioDSSL) 107

Combining data from differentmodalities or sensors can be handled on differ-
ent levels of fusion:

Sensor-level fusion: This is the earliest stage at which fusion can occur.
It involves integrating data from multiple sensors before any processing
takes place. This approach can provide a rich dataset for identification but
can also introduce significant complexity due to the need to manage raw
data from diverse sensors.

Feature-level fusion: Features are extracted from the sensor data, and the
feature sets from different sensors are combined. This method has the po-
tential for high identification accuracy because it uses detailed feature in-
formation.However, it requires ahighdegree of compatibility between fea-
ture sets, which can be challenging to achieve with diverse sensors and
modalities.

Score-level fusion: At this stage, each sensor or modality independently
processes its data and outputs a score representing the confidence of a
match. These scores are then combined to make a final decision. Score-
level fusion is a popular choice because it offers a good balance between the
amount of information used and the generalizability of the approach.

Rank-level fusion: This method also involves independent processing by
each sensor or modality, but instead of outputting scores, they output
ranked lists of potentialmatches. These ranks are then combined tomake a
final decision. This method can be efficient and relatively simple to imple-
ment but may not utilize the available information as effectively as score-
level fusion.

Decision-level fusion: This is thefinal stage atwhich fusion can occur. Each
sensor or modality independently processes its data and makes a yes/no
identification decision. These decisions are then combined to make a fi-
nal decision. This method is the simplest to implement but uses the least
amount of information, potentially resulting in lower identification accu-
racy.

7.4.3 Challenges in current systems

With an understanding of the diversity and complexity of sensors and modal-
ities in biometric identification systems, as well as the different fusion levels,
we can now focus on the challenges that these systems currently face.

One challenge in current biometric systems is the integration of new sensors.
Aswehave seen, each sensor andmodality comeswith its own specific require-
ments and complexities. Integrating a new sensor into an existing system can
be a daunting task, often requiring substantial effort and modifications to the
system.

Further, adjusting security levels in response to evolving threat models is an-
other challenge. Given the static nature of many existing biometric systems,
making such adjustments can be complex and time-consuming. The inability

7 Biometric Domain Specific Sensor Language (BioDSSL) 108

to quickly and dynamically adjust security levels can potentially leave systems
vulnerable to emerging threats.

In addition, balancing usability and security presents a persistent challenge.
On the one hand, systemsmust be secure and robust against spoofing attempts
and noise. On the other hand, they must also be user-friendly, minimizing the
time and effort required by users during identification. Striking the right bal-
ance is a delicate task that many current systems struggle with.

These challenges highlight the need for a solution that simplifies sensor in-
tegration, enables dynamic security adjustments and makes it easy to balance
usability and security. In the following sections,wewill see howBioDSSL is de-
signed toaddress these challenges, improving theoverall efficiency, adaptabil-
ity, and resilience of biometric identification systems.

7.4.4 Previous attempts at solutions and their limitations

While there has been extensive research on various aspects of biometric sys-
tems, a structured way of specifying components in a biometric system has
not been addressed in academic literature.Most studies have primarily focused
on the intricacies of different fusion levels and detailed exploration of single
modality systems (c.f. Chapter 2.1). Consequently, these investigations do not
provide comprehensive solutions for integrating diverse sensors seamlessly
into an existing system nor updating the pipeline.

7.5 BioDSSL: A Domain Specific Sensor Language

Given the challenges and limitations identified in current biometric identifica-
tion systems,we propose a novel solution, BioDSSL.We describe its underlying
concept, design principles (Section 7.5.1) and unique features (Section 7.5.2) to
simplify and enhance the resilience of biometric identification systems.

7.5.1 Concept and Design Principles of BioDSSL

BioDSSL has been developed with the aim to alleviate challenges related to
complexity and scalability inherent in biometric identification systems. It ac-
commodates the fact that different verifiers or operators of biometric systems
can have vastly different requirements based on the context and purpose of the
system (cf. Fig. 7.2).

For instance, in high-security environments such as border control check-
points, the verifiers may wish to rely on a single, highly trusted biometric de-
vice that has been extensively validated for accuracy and reliability. Thismight
include sophisticated devices such as iris scanners or high-resolution finger-
print readers, and the associated high level of assurance is necessary given the
potential risks involved. On the other hand, in less critical contexts where the
primary focus might be convenience or throughput, the requirements for the

7 Biometric Domain Specific Sensor Language (BioDSSL) 109

Security

Usability

0 FN

0 FPmany FP

many FN

ideal
system

real-world

performance of

biometric systems

e.g. border check

e.g. class
attendance

Figure 7.2: Different scenarios require a different trade-off between security
and usability. In some cases (e.g. border control) false positives
should be drastically reduced. In exchange, some false negatives
might be acceptable, as additional (better) sensings could take care
of these. On the other hand, in a different scenario (e.g. attendance
tracking) the focus could be reducing false negatives, as the conse-
quences are less severe than a false positive.

biometric system can be significantly less stringent. For example, in an edu-
cational institution tracking student attendance, less accurate but more expe-
dient methods may be perfectly sufficient. In such a scenario, a simple facial
recognition system or a fingerprint reader on a smartphone might be deemed
adequate.

The fundamental concept behind BioDSSL is to provide a structured yet flex-
ible language that can manage the configuration, integration, and operation
of a wide variety of applications. Through this, BioDSSL aims to simplify the
process of integrating new sensor modalities into existing systems, as well as
provide mechanisms for dynamically adjusting the system’s security settings
as per situational requirements.

7.5.2 Unique Features and Advantages

Level of fusion

BioDSSL wants to use as much biometric data as possible for fusion without
overly complicating the system or creating undue burdens when changes are
implemented. To this end, BioDSSL adopts score-level fusion as a fundamen-
tal part of its design. This level of fusion is chosen because it retains a high level
of information, but does not necessitate the re-training of complex models
when changes, such as adding a new modality, are introduced. This is in con-
trast to sensor-level and feature-level fusion, which, while heavily researched
in recent years [149, 165], typically require retraining of the network when-
ever changesare implemented.Given thedynamicnatureof biometric systems,
does not seem feasible to retrain networks each time a change is made. Score-

7 Biometric Domain Specific Sensor Language (BioDSSL) 110

level fusion, therefore, represents a more practical and efficient choice. It al-
lows BioDSSL to accommodate changes in the system, such as the addition of
newmodalities or updates in security levels, without needing to undergo time-
consuming and resource-intensive retraining processes.

Sensor tags

BioDSSL incorporates a tag systemfor sensors to increaseflexibility andadapt-
ability, allowing the system to respond effectively to a wide array of circum-
stances, whether anticipated or not. The tags can be as generic or as specific as
required by the context. For our running examples, a tag could be soft biometric
for a system tracking student attendance, or it could refer to a specific device
model used at a border control checkpoint. By allowing the tags to be muta-
ble and not fixed, BioDSSL can adapt to evolving circumstances and changing
system requirements.

Inmore detail, useful tags for a sensor could include a universally unique iden-
tifier (UUID) for unambiguous identification, the modality (fingerprint, iris,
face, etc.), the operator (who uses or manages the sensor), the modality class
(soft or hard biometric), the certified by tag (indicating the certifying author-
ity), and the location of the sensor. These tags enable a granular level of control
and customizability.

7.6 Implementation

BioDSSL adopts a straightforward language syntax. The core elements of
the language include tags (TAG), which are alphanumeric strings that can
include hyphens, and values (VALUE), which can either be strings without
quotes (VALUE-NO-QUOTES) or strings enclosed in quotes (VALUE-WITH-
QUOTES). These elements are combined to create tag-value pairs (TV), which
are semicolon-separated tag-value sequences (TVS). Each sensor has the
mandatory SECS tag, denoting a floating-point value that defines the permis-
sible duration, in seconds, for utilizing a reading. Additionally, it supports an
arbitrary number of tag-value sequences using a comparison operator (“>” or
“<”), along with a threshold level (THRESHOLD) associated with that sensor.
The THRESHOLD represents a specific biometric parameter value that must be
exceeded or not reached, depending on the operator, for the sensor’s reading
to be considered valid. A complete set of sensors (AUTH) is then defined as a
comma-separated sequence of sensor definitions.

The language structure can be represented in augmented Backus-Naur
form [39]:

1 TAG = ALPHA*(”−” / ALPHA) ;
2 VALUE−NO−QUOTES = 1*(ALPHA / DIGIT) ;
3 VALUE−WITH−QUOTES = DQUOTE 1*(VALUE−NO−QUOTES / SP) DQUOTE ;
4 VALUE = VALUE−WITH−QUOTES / VALUE−NO−QUOTES ;
5 TV = TAG ”=” VALUE ;
6 TVS = TV*(”;” TV) ;

7 Biometric Domain Specific Sensor Language (BioDSSL) 111

7 THRESHOLD = FLOAT ;
8 SENSOR = ”SECS = ” INTEGER ”;” TVS (”<” / ”>”) THRESHOLD ;
9 JOIN = ”AND” / ”OR” ;
10 AUTH = [”(”] SENSOR*([”(”] JOIN SENSOR [”)”]) [”)”] ;

This language design, while simple, enables the representation of complex
sensor configurations, allows dynamic adjustments of security levels and is
able to accommodate a wide array of sensors andmodalities.

The ability to adjust the confidence level and comparison operator directly ad-
dresses the need for dynamic security adjustments, catering to varying needs
across different contexts. In the following section,wewill explore how this im-
plementation of BioDSSL is tested and validated through case studies and ex-
perimental results. Thiswill provideapractical demonstrationofBioDSSL’s ef-
ficacy in addressing the challenges in the current paradigm of biometric iden-
tification systems.

7.7 Case studies and experimental results

To evaluate the effectiveness and efficiency of BioDSSL, we conducted a series
of experiments.

7.7.1 Experimental setup

Our experimental setup involved describing the application of BioDSSL in dif-
ferent biometric identification system contexts, ranging from high-security
applications such as border control, to more routine scenarios like student at-
tendance tracking. The chosen scenarios differed significantly in their security
requirements, the diversity of sensors used, and the volume of biometric data
handled. This diverse selection was intended to test the adaptability and ver-
satility of BioDSSL.

We used a variety of modalities in our experiments, including both hard and
soft biometrics. The tag system of BioDSSL allowed to manage this diversity
and helped in the seamless integration of new sensors.

7.7.2 Case studies demonstrating the efficacy of BioDSSL

The case studies conducted show the flexibility of BioDSSL in accommodating
a variety of system requirements and sensor configurations.

Student attendance tracking

Thefirst case study focused on student attendance tracking for a lecture. In this
setting, a single soft biometric couldbe sufficient tomeet the system’s require-
ments, leading to this BioDSSL config:

7 Biometric Domain Specific Sensor Language (BioDSSL) 112

1 AUTH = secs=60;operator=dept−a;
2 modality=”soft biometric” < 1.0

This example demonstrates how BioDSSL can be used to manage a lower-
security requirement setting, accommodating a soft biometric sensor and en-
abling easy adjustment of security settings based on the context. The tag sys-
temstreamlined the integration of the soft biometric sensor.Moreover, the in-
herent adaptability of BioDSSL provides the department with flexibility for fu-
ture expansions or changes. For instance, if the department decides to deploy
a new sensor, even of a different modality, the systemwill continue to operate
seamlessly, as long as the new sensor is also tagged as a soft biometricmodality.

The adaptability of BioDSSL proves to be a valuable feature, providing flexibil-
ity for future expansions or changes. For instance, the department could decide
to introduce a second authentication modality using a fingerprint scanner. By
tagging the fingerprint scanner as a newmodality, students who use the scan-
ner would also be marked as present.

1 AUTH = secs=60;operator=dept−a;
2 modality=”soft biometric” < 1.0 OR
3
4 secs=300;operator=dept−a;
5 modality=”fingerprint” < 0.04

An additional benefit of BioDSSL are decentralized deployments. If another
department, physically located in the same hallway also want to use biomet-
ric attendance tracking, the same sensors can be used, provided that the sen-
sor’s operator grants permission for this shared use. Without BioDSSL, each
verifier would need to be individually configured and updated whenever there
are changes in sensor usage or security protocols. This task becomes cumber-
some and prone to errors with an increasing number of verifiers. However,
with BioDSSL, changes can be implemented universally bymerely updating the
shared BioDSSL specification, significantly reducing the effort and potential
for errors. For instance, if the department decides to introduce gait recogni-
tion sensors in multiple locations, the BioDSSL configuration can be effort-
lessly updated to accommodate the newmodality, as shown below:

1 AUTH = secs=60;operator=dept−a;
2 modality=”soft biometric” < 1.0 OR
3
4 secs=300;operator=dept−a;
5 modality=”fingerprint” < 0.04 OR
6
7 secs=30;operator=dept−b;
8 modality=”gait” < 1.0

Border control

On the other end of the spectrum, in the context of a high-security scenario
such as border control, the system requirements differ significantly. The bor-
der control authority could rely on a specific, trusted device to ensure stringent
security measures are met.

7 Biometric Domain Specific Sensor Language (BioDSSL) 113

To integrate the trusted device into the BioDSSL system, the following config-
uration could be used:

1 AUTH = secs=15;uuid=655f60a4 < 0.3

This implementation showcases the ability of BioDSSL to seamlessly incor-
porate specific, trusted devices within high-security applications. By specify-
ing the device’s unique identifier (UUID) and defining the appropriate security
threshold, the system can effectively utilize the trusted device to enhance se-
curity measures at border control checkpoints.

However, in order to further enhance the border control system’s capabilities,
the integrationof, for example, radardistance sensingcanbeconsidered.Radar
distance sensing technology canprovide valuable informationabout thephysi-
cal proximityof individuals,whichcanbeuseful in identifyingpotential threats
or unauthorized access attempts. To incorporate radar distance sensing into
the existing BioDSSL system, the sensor configuration can be extended as fol-
lows:

1 AUTH = secs=15;uuid=655f60a4 < 0.3 AND
2 secs=15;modality=”radar distance” < 0.5

By including the additionalmodality of radar distance and assigning an appro-
priate threshold, the system can leverage radar distance sensing to comple-
ment the existing trusted device. This combination of sensors enables amulti-
modal approach to security, incorporating both the trusted device and radar
distance sensing toenhance threatdetectionand toensurea robustborder con-
trol system.

The use of parentheses and the logical operators “and” and “or” (JOIN) in
BioDSSLenables the creationofmore complex scenarios and enhances the sys-
tem’s flexibility. By enclosing sensor configurationswithin parentheses, it be-
comes possible to group conditions and establish precedence when evaluating
them. This allows for the specification of intricate requirements and the logical
relationships between different sensor modalities or thresholds.

7.8 Attacks

While BioDSSLmay enhance the flexibility of biometric identification systems,
it is essential to assess its impact on privacy and security to ensure these bene-
fits do not come at the expense of user protection. This includes understanding
potential vulnerabilities and considering potential attack vectors.

One potential threat scenario involves a rogue sensor that could deceive the
system by falsifying specific tags. In this scenario, an attacker could manip-
ulate a sensor to replicate the tags associatedwith a trusted sensor, leading the
system to accept fraudulent biometric data. This type of attack is similar to a
cybersecurity technique known as “spoofing”, where an unauthorized entity
assumes the identity of a trusted entity to exploit the system’s vulnerabilities.

To address this issue, several mitigations commonly employed against spoof-
ing attacks can be applied in this instance as well. These include:

7 Biometric Domain Specific Sensor Language (BioDSSL) 114

Authenticating sensors: Implementing a robust authenticationmechanism
that verifies the identity and integrityof eachsensor canprevent rogue sen-
sors from infiltrating the system. This ensures that only trusted sensors are
accepted, reducing the risk of fraudulent data.

Digital signatures for tags: Utilizing digital signatures for the tags issued by
trusted entities. These entities can range from a specific institution or or-
ganization to amore global or national authority. For instance, in a system
designed for tracking student attendance, only those tags signed by the re-
sponsible educational institute could be trusted. Alternatively, certain ap-
plications may opt to trust tags signed by a more overarching issuer, such
as a national regulatory body.

By implementing these mitigations, the system can reduce the risk of spoof-
ing attacks and enhance its overall security posture in the face of rogue sensor
threats.

The modular nature of BioDSSL allows for the integration of additional se-
curity measures as they become available or necessary. This could include
cryptographic verificationmethods, dynamic tag assignment, or sophisticated
anomaly detection algorithms to identify and isolate potential rogue sensors.

Summary

In conclusion, this chapter has presented BioDSSL as a solution to the es-
calating complexity of biometric identification systems. By addressing the
challenges associated with system maintenance, scalability, and adaptability,
BioDSSL offers a systematic and repeatable language for integrating new sen-
sors and dynamically adjusting security levels based on specific use cases.

The decentralization of biometric identification systems is a key focus of
privacy-conscious biometric identification. BioDSSL contributes to the disper-
sal of sensitive biometric data across various nodes, enhancing privacy protec-
tion and reducing the potential damage from localized security breaches. This
step towards decentralized and resilient systems aligns with the progressive
interconnectivity of our world.

The adoption of BioDSSL not only improves technical aspects but also holds
the promise of indirect benefits. It enables the efficient operation of biomet-
ric identification systems by handling diverse sensor readings from multiple
modalities.

As biometric identification systems continue to become ubiquitous, BioDSSL
offers an easy way for striking an optimal balance between usability and secu-
rity.

Moreover,BioDSSL’s adaptabledesignallows for future improvements andad-
vancements, providing opportunities to enhance the overall architecture and
further reinforce security measures. For example, in the future BioDSSL could
be enhanced by offering encryption mechanisms, access control policies, and
anonymization techniques to ensure the protection of biometric data during
transmission or storage.

Chapter 8

When Theory Hits Reality: Living lab
prototype and Digidow integration

As we approach the conclusion of this thesis, we shift our focus from the in-
depth analyses presented in Chapters 3 through 7 to a broader examination
of practical applications and potential synergies of our research findings. To
demonstrate that the outcomes of this study extend beyond theoretical sig-
nificance and can indeed enhance real-world applications when combined, we
have developed a living lab prototype within the context of the CDL Digidow
(c.f. Section 8.1).

This chapter begins by explaining the parts of Digidow that are relevant to
this thesis, including its main components and how they interact (Section 8.1).
Next, the focus shifts to the living lab prototype (Section 8.2), covering:

Legal assessments: Conducting legal assessments is essential when deal-
ingwith biometric data to ensure compliancewith data protection laws and
regulations, such as obtainingnecessary permits andperformingData Pro-
tection Impact Assessments (DPIAs).

Scenariosaddressed:Theprototypeaddresses twomainscenarios, demon-
strating its versatility and practical relevance in real-world settings.

Hardware selection: The choice of hardware is important for the system’s
performance and reliability. The selection process and the reasons behind
choosing specific components are explained.

115

8 When Theory Hits Reality: Living lab prototype and Digidow integration 116

Programming language: The decision to use the Rust programming lan-
guage for implementation is due to its performance, safety features, and
suitability for system-level programming.

A detailed description of the Sensor component follows (Section 8.3), high-
lighting the incorporation of improvements fromprevious chapters and show-
ing how theoretical work translates into practical enhancements. The sensor is
divided into different components, and reusable libraries (sensor-lib and face-
lib) are created. This modular approach allows for easier extension and future
work, removing the need for duplicate code:

1. face-lib: The face library implements Rust’s state-of-the-art, off-the-
shelve face recognition pipelines, including the combined face detection
model described in Chapter 6.

2. sensor-lib:This libraryhandles registrations, automaticallymanages their
lifespan, and processes the sensing events.

Finally, the combination of these libraries to create an efficient pipeline capa-
ble of processing three frames per second using 4k cameras in two different
settings (single-door and hallway scenarios) is demonstrated.

The chapter concludes by discussing real-world results, reflecting onhow the-
oretical improvements are performed in practice and the insights gained from
this implementation (Section 8.4).

8.1 Digidow

Digidow1 is a digital identity system designed to address the growing need for
secureandprivate identityverification inbothdigital andphysical interactions.
Recognizing the limitations and risks associated with centralized systems like
Aadhaar, Digidow aims to offer a decentralized, user-centric alternative that
enhances privacy and control over personal data.

8.1.1 Components

The primary focus of this thesis is the sensor, an essential component of bio-
metric systems. However, the sensor alone does not constitute the entirety of
such systems. At a high level, biometric systems typically require four compo-
nents:

1. Sensor: Captures biometric data from individuals.

2. Identity Management System: Responsible for securely managing identi-
ties and storing personal biometric templates.

3. Identity Provider/Issuing Authority: Attests that a personal biometric tem-
plate truly belongs to a specific individual, ensuring the authenticity of the
stored biometric data.

1https://digidow.eu

https://digidow.eu

8 When Theory Hits Reality: Living lab prototype and Digidow integration 117

(B
oo

ts
tr

ap
 d

isc
ov

er
y)

St
ro

ng
 tr

us
t(Weak) trust

Proof of reading

TrustAttr
ibute

s

Li
st

 o
f s

en
so

rs

Re
pu

ta
ti

on

Ce
rt

ifi
ca

te
Ce

rt
ifi

ca
te

Certificate

Certificate

(U
lt

im
at

e)
 T

ru
st

Register

Trust

List of acceptable sensors

Credential: claim + proof

Tr
us

t

Au
th

en
ti

ca
ti

on

U
se

r
in

te
rf

ac
e

Register

Weak trust

HW Root of Trust

Sensor Aggregator

AggregatorIndividual

Sensor
directory

availability, capabilities,
reputation

Issuing
Authority

RegisterAttributes

+ external

reviews

VerifierPIA

Verifier
directory

requested attributes,
reputation/review by

external parties

Figure 8.1: The components proposed by the Digidow project [133].

4. Verifier/Authorizer: Authorizes specific users to perform designated ac-
tions based on their authenticated biometric identity.

These components exist in both centralized and decentralized architectures,
though their boundaries may be less distinct in centralized systems.

In Digidow, these components are implemented as follows (c.f. Fig. 8.1):

1. Sensors are used to link physical interactions with digital identities. These
devices collect biometric data from individuals and authenticate it against
the information stored in their PIAs. The system is designed to ensure that
this biometric data is handled securely, preserving user privacy.

2. Personal Identity Agents (PIAs) securely store an individual’s identity at-
tributes and manages access to them. This approach allows users to re-
tain control over their data, deciding where it is stored and who can access
it. PIAs can be implemented on various platforms, including smartphones,
home servers, and cloud services, providing flexibility and resilience.

3. Issuing authorities in theDigidowsystemvalidate and issue digital identity
attributes. These authorities can range from government bodies to private
organizations, broadening digital identities’ applicability. The decentral-
ized nature of these authorities helps distribute trust and reduces the risk
associated with any single entity having too much control.

8 When Theory Hits Reality: Living lab prototype and Digidow integration 118

4. Verifiers are entities that need to authenticate individuals to grant access to
services or resources. They interact with PIAs to obtain and verify the nec-
essary attributes, ensuring secure and efficient access control. This setup
is designed to handle a high volume of requests while maintaining data in-
tegrity and confidentiality.

8.1.2 Interaction

The sensor has two interactions with other Digidow components, specifically
with the PIA.

In Digidow, the PIA plays an active role: whenever it anticipates that the
person it representsmaywant to performanaction, such as opening adoor,
it preemptively registerswith the sensor. This registrationessentially com-
municates:u “Imight showup in thenear future.”→ Implicit statement, transferred

by the fact that the sensor receives this registration.u “You can identify me with that information.” → This refers to a bio-
metric identifier, typically an embedding for most modalities. Alterna-
tively, it could be MPC contact information if the parties prefer not to
share raw embeddings.u “Please contact me when this happens.” → This is the callback onion
address [209] of the PIA, which refers to a specific service hosted on the
Tor network. An onion address is a unique identifier for a service within
the Tor network. The use of onion addresses allows services to be ac-
cessed anonymously without revealing their physical location or IP ad-
dress.

Listing 8.1.2 shows an example of a registration.

1 {
2 "@context":[
3 "https://www.w3.org/2018/credentials/v1",
4 "https://digidow.eu/v1",
5],
6 "credentialSubject":{
7 "callback−url":"http://

fbdcwqqjt4ainuwmwxbh7ns6vhqixser2piq4l6lhwifarespz447pyd.onion/",
8 "embedding":[
9 // embedding removed for brevity

10]
11 },
12 "expirationDate":"2024−08−15T11:53:33UTC",
13 "issuanceDate":"2024−08−15T10:53:33UTC",
14 "issuer":"JKU",
15 "proof":{
16 "signatures":{
17 "embedding":"odH9BZAOXBXgLPrAyQ45plZMi9dv/LXWLPlgcFmNngkcqzY+81

KNN2wu1Ykjo+
V6Y1ErdsLBaeXoQQNwraEf6MUFFJuP3VH17L5kJP8oAcZyIGB6OUM3P2jcQfsn7IAwVH/
fmLtJRxjMZTzu8WmXzA=="

8 When Theory Hits Reality: Living lab prototype and Digidow integration 119

18 },
19 "type":"BBS+"
20 },
21 "type":"registration"
22 }

If the sensor detects a registered person, it initiates a sensor push contain-
ing the following information:u Meta-data…

… indicating that this is part of a Digidow transaction

1 [
2 "https://www.w3.org/2018/credentials/v1",
3 "https://digidow.eu/v1"
4]

… specifying who issued this data

1 "Self"

… timestamp of the creation

1 "2024−09−24T12:34:57UTC"

u The specific action the sensor believes the user intends to perform (e.g.,
“door-opening-data”)…

1 "door−opening−data"

u …and relevant details needed for the action:

1 {
2 "door−id": 42,
3 "datetime": "2024−09−24T12:34:56UTC",
4 "proposed−verifier": "http://

ykozugfdo2urn6d3tvhge4eoaesftfe3rhefgagmrj4fumwphvajh3qd.onion/v1/push
",

5 "identity": // the registered embedding
6 }

8.2 Living lab prototype

This prototype aims to validate the effectiveness and applicability of our re-
search findings by integrating them into a functional biometric authentication
system. By deploying this system in two distinct scenarios—a hallway and a
single door—we can evaluate its performance, versatility, and reliability. The
living lab environment serves as a testbed for our proposed ideas and provides
insights into potential challenges and areas for further improvement.

8 When Theory Hits Reality: Living lab prototype and Digidow integration 120

8.2.1 Hardware

The hardware selection for the Digidow prototype was driven by the need to
balance performance, cost, and practicality. The primary goal was to demon-
strate that high-performance biometric authentication can be achieved using
minimal and cost-effective hardware resources, which also prioritizes energy
efficiency. This approach aims to prove that robust biometric systems can be
implemented without relying on expensive, power-hungry hardware, making
themmore accessible and sustainable for widespread deployment.

Jetson Nano: The core of the sensor system is the NVIDIA Jetson Nano,
a compact computing platform specifically designed for AI and machine
learning applications. The Jetson Nano was chosen for several reasons:u GPU Acceleration: It features a 128-core Maxwell GPU, providing com-

putational power for parallel processing tasks such as image recog-
nition and data processing. This GPU acceleration is crucial for real-
time biometric authentication, enabling the system to process high-
resolution images quickly and accurately.u Power Efficiency: Despite its computational capabilities, the Jetson
Nano is designed to operate efficientlywith low power consumption. To
quantify its energy consumption, we employed a Power over Ethernet
(PoE) switch for precise measurements. Our analysis revealed an aver-
age power draw of 10.82 watts if the full pipeline is continuously exe-
cuted. This makes it suitable for deployment in various environments,
including those where power resources are limited.u Cost-Effectiveness: Compared to other AI computing platforms, the
Jetson Nano offers balance of performance and cost, making it acces-
sible for experimental and practical applications without requiring sig-
nificant investment.

That said, the prototype’s architecture is designed with modularity and
flexibility in mind, allowing for easy hardware substitution. This design
choice enables the system to adapt to various computational needs and re-
source constraints. For instance, the current hardware setup could be re-
placed with alternative configurations, such as a Raspberry Pi equipped
with a Google Coral GPU accelerator2 or the Raspberry Pi AI hat3. This
adaptability ensures that the system can be optimized for different deploy-
ment scenarios.

Cameras: For capturing biometric data, the prototype employs different
camera setups tailored to specific scenarios:u 4k USB Cameras: In the hallway scenario, 4k USB cameras are used to

ensure high-resolution image capture. The higher resolution allows for
more detailed facial recognition, improving the accuracy and reliability
of the biometric system. These cameras are connected via USB, simpli-
fying the setup and ensuring compatibility with the Jetson Nano.

2https://coral.ai/products/accelerator/
3https://www.raspberrypi.com/news/raspberry-pi-ai-kit-available-now-at-70/

https://coral.ai/products/accelerator/
https://www.raspberrypi.com/news/raspberry-pi-ai-kit-available-now-at-70/

8 When Theory Hits Reality: Living lab prototype and Digidow integration 121

u 1280x800 RTSP Camera: In the single door scenario, a 1280x800 RTSP
outdoor camera is utilized. This camera provides sufficient resolution
for accurate facial recognitionwhile beingmore affordable and outdoor
proved housing into various environments. TheRTSPprotocol supports
streaming, enabling the system to effectively capture and process real-
time video feeds as an example for arbitrary RTSP cameras.

8.2.2 Programming language

Rust was chosen for the implementation of the Digidow prototype for several
reasons, centered around performance, safety, concurrency, and modern lan-
guage features.

Memory safety and security: A standout feature of Rust is its strong em-
phasis onmemory safety without needing a garbage collector. Rust’s own-
ership model enforces strict rules on how memory is managed, effectively
eliminating common bugs such as null pointer dereferencing and buffer
overflows. These safety guarantees are vital for biometric systems, where
security vulnerabilities can lead to severebreachesof sensitivedata. Bypre-
venting sucherrors at compile-time,Rust enhances the security and stabil-
ity of the Digidow system, ensuring that biometric data is handled securely
and reliably.

Performance and efficiency: Rust provides performance comparable to
low-level languages like C and C++, which is critical for handling real-time
biometric dataprocessing. The language’s zero-cost abstractions allowde-
velopers towrite high-level codewithout incurring runtime overhead. This
performance is essential for applications requiring quick and reliable bio-
metric recognition, where delays or inefficiencies can significantly impact
user experience and system reliability.

Concurrency:Rust’s design includes built-in support for safe concurrency,
allowing the development of multithreaded applications that can effi-
ciently utilize modern multicore processors. This is particularly beneficial
for the Digidow system,whichmay need to processmultiple biometric data
streams simultaneously. Rust’s concurrency model helps developers write
concurrent code that is free from data races and other concurrency-related
bugs, ensuring that the system remains performant and responsive under
concurrent workloads.

8 When Theory Hits Reality: Living lab prototype and Digidow integration 122

8.2.3 Hallway scenario

FoundationThis subsection is primarily based on the content I developed for
our website (accessible at https://www.digidow.eu/experiments/face-
recognition-on-campus/). Hofer, Philipp, Philipp Schwarz, Michael
Roland, and René Mayrhofer. 2024. Shrinking embeddings, not accuracy:
Performance-Preserving Reduction of Facial Embeddings for Complex
Face Verification Computations. In 14th International Conference on Pattern
Recognition Systems (ICPRS 2024). IEEE, London, UK, (July 2024)

The goal of this project is to unlock doors withoutmanual interaction if an au-
thorized person intending to open a door is detected. Thismight be of particu-
lar interestwhen both hands happen to be full orwhen points of contact should
be limited asmuch as possible, for example, when entering an operating room.
Therefore,multiplenon-moving cameras areplacedaround the secondfloorof
JKUSciencePark 3 in front of the Institute ofNetworks andSecurity, c.f. Fig. 8.2.
The exact positions are marked in Fig. 8.3.

These cameras record the corridor, doors, and persons walking along the cor-
ridor. Camera sensor devices perform face detection in real time and initially
discover any person in the image. The sensor verifies (again in real-time) if the
person is a participant in this study. Additionally, the person’s intent is pre-
dicted only to open a door if that is assumed to be the person’s desire.

If a non-participating person is detected, any data about that person (i.e., the
images and the fact that some unknown person was detected) is immediately
discarded, and no information about the detection of such a person is stored.
For participants (i.e., personswho explicitly opted in to the study), only the fact
that a person has been recognized and the person’s intent are stored and used
to determine if a person is authorized to unlock the specific door.

The Digidow architecture consists of three components: The sensor and the
personal agent agree upon whether the individual (person whose digital iden-
tity ismanagedby thepersonal agent) is in front of a doorwithout revealing the
sensor’s raw images. The information that this particular person is standing in
front of a particular door and has the intention to enter the room is authen-
ticated by the sensor and provided to the personal agent. The personal agent
then uses this authenticated proof to request the verifier to unlock the door
given that the person is authorized to access the room.

If a person does not want to participate in this system, that person can still rely
on the existing key card-based access control mechanism to access rooms. In
that case, our experimental setupwill not recognize the person andwill, there-
fore, not store any data for these cases.

Legal aspects

Before diving into the technical aspects, since we want to process highly per-
sonaldata, it is crucial toaddress the regulatoryand legal considerations for the
experiment setup. The Austrian Data Protection Authority (DPA) is Austria’s

https://www.digidow.eu/experiments/face-recognition-on-campus/
https://www.digidow.eu/experiments/face-recognition-on-campus/

8 When Theory Hits Reality: Living lab prototype and Digidow integration 123

Figure 8.2: Physical setup of the hallway experiment. The corridor is moni-
tored by three strategically placed 4k cameras, ensuring compre-
hensive coverage of the entire space. This arrangement allows for
high-resolution observation and data collection across the length
of the hallway.

8 When Theory Hits Reality: Living lab prototype and Digidow integration 124

Figure 8.3: Top-down view of the experimental corridor showing the positions
of three cameras strategically placed to provide full coverage of
the hallway. Blue rectangles indicate the locations of signs inform-
ing individuals about the ongoing experiment and the use of facial
recognition technology.

national supervisory authority for data protection. Legally, the space within
JKU Science Park 3 is considered a public area during the day (though it be-
comes restricted at night when the doors are closed). Thus, since the experi-
ment involves a semi-public space within the JKU Science Park 3, obtaining a
permit from the DPA was necessary. We requested4 and subsequently received
the required approval5.

It was not clear if a Data protection impact assessment (DPIA) is required
for our experiment. Based on the guidelines of the Article 29 Data Protection
Working Party (WP 248), a DPIA is necessary if at least two out of nine criteria6

for likely high-risk data processing operations are met. Even if only to a small
extent, our experiment fulfills three of these criteria:

1. Systematicmonitoring is fulfilled because a larger area is continuouslymon-
itored.

2. Sensitive data or data of a highly personal nature is fulfilled because images
are analyzed according to biometric characteristics.

3. Innovative use or applying new technological or organizational solutions is ful-
filled because the automatic unlocking is a new application and also in-
cludes organizational aspects.

4Accessible at https://www.digidow.eu/experiments/face-recognition-on-campus/JKU-face-
recognition-DSB-request.pdf

5Accessible at https://www.digidow.eu/experiments/face-recognition-on-campus/JKU-face-
recognition-DSB-decision.pdf

6Accessible at https://ec.europa.eu/newsroom/article29/items/611236

https://www.digidow.eu/experiments/face-recognition-on-campus/JKU-face-recognition-DSB-request.pdf
https://www.digidow.eu/experiments/face-recognition-on-campus/JKU-face-recognition-DSB-request.pdf
https://www.digidow.eu/experiments/face-recognition-on-campus/JKU-face-recognition-DSB-decision.pdf
https://www.digidow.eu/experiments/face-recognition-on-campus/JKU-face-recognition-DSB-decision.pdf
https://ec.europa.eu/newsroom/article29/items/611236

8 When Theory Hits Reality: Living lab prototype and Digidow integration 125

Further details are outlined in our data protection impact assessment, acces-
sible at https://www.digidow.eu/experiments/face-recognition-on-campus/
JKU-face-recognition-DSFA-automatische-Tuerentsperrung.pdf.

8.2.4 Single door scenario

The single door scenario tests the system’sperformance and reliability in adif-
ferent environment and setup compared to the hallway scenario. Here, a single
camera ismounted directly above a door, focusing on capturing and processing
biometric data for individuals approaching this specific entry point. This sce-
nario is designed to evaluate the system’s capability to operate effectively in a
localized area where quick and accurate authentication is crucial.

The single-door setup involves a 1280x800 RTSP camera, chosen for its bal-
ance between resolution and practical deployment considerations, consider-
ing older in-the-wild cameras. This camera provides adequate detail for facial
recognition while maintaining affordability and ease of integration. The cam-
era streams real-time video to the Jetson Nano, where the biometric data is
processed locally.

In this scenario, the system’sprimaryobjective is to adapt todifferent environ-
ments: Testing the system in a single door setting allows us to assess its adapt-
ability to various architectural layouts and environmental conditions. Addi-
tionally, this single-door scenario enables the comparison of outdoor vs. in-
door cameras, allowing us to test how different environmental factors, such as
lighting and weather conditions, impact the system’s performance. This sce-
nario helps to validate the system’s decentralized architecture. By deploying
the system in a distinct location, we can demonstrate its ability to function in-
dependently and securely without relying on a centralized server. This decen-
tralization enhances the robustness and scalability of the biometric authenti-
cation system, making it suitable for a wide range of applications, from small
office spaces to larger, more complex facilities.

8.3 Sensor

Source codeThe code is publicly available at https://git.ins.jku.at/proj/digidow/sensor
and in Chapter A.

The sensor implementation for the Digidow prototype utilizes a modular ap-
proach, incorporating two core libraries to ensure flexibility, reusability, and
efficiency: face-lib and sensor-lib (c.f. Fig. 8.4). This modular design is moti-
vated by the need to create a robust and adaptable system that can be easily ex-
tended and maintained. By separating the functionality into distinct libraries,
we can focus on specific tasks such as face detection, face recognition, and se-
cure communication, thereby enhancing the overall scalability of the system.
This approach also facilitates future improvements and integrations, allowing
the system to evolve with advancements in biometric technology and security
practices.

https://www.digidow.eu/experiments/face-recognition-on-campus/JKU-face-recognition-DSFA-automatische-Tuerentsperrung.pdf
https://www.digidow.eu/experiments/face-recognition-on-campus/JKU-face-recognition-DSFA-automatische-Tuerentsperrung.pdf
https://git.ins.jku.at/proj/digidow/sensor

8 When Theory Hits Reality: Living lab prototype and Digidow integration 126

Sensor

face-
lib

sensor-
lib

Figure 8.4: Components of the sensor code.

8.3.1 face-lib

Source codeThis library is publicly available at https://git.ins.jku.at/proj/digidow/
sensor-lib and in Chapter A.

face-lib is aRust-based library thatprovides comprehensive functionalities for
facial biometric processing. It supports both face detection and face recogni-
tion, employing state-of-the-art models to ensure high accuracy and perfor-
mance.

Face detection The library provides functionalities to perform face detection
on images and extract the embeddings from each face (c.f. Listing 8.3.1). The
modelsused throughout this thesis, Retinaface and the fasterULFGFD, are cur-
rently supported. Additionally, it incorporates a combined facedetectionmodel
described in chapter 6, enhancing detection reliability under diverse condi-
tions. To illustrate the library’susage,here’s a codeexample that demonstrates
how to initialize the face detection pipeline, process an image, and retrieve the
results. The library’s flexible design allows users to easily switch between dif-
ferent detection models or utilize the combined approach based on their spe-
cific requirements for accuracy and speed.

1 use face::Detection;
2 use face::detection::{FaceProposal, FaceLandmarkProposal, FacialArea, Landmarks,

Point, realface::RealFace};
3

4 let mut f = RealFace::new(0.7,
5 "./static/detection/fastdet_640.onnx",
6 "./static/detection/retinaface−150x150.tflite",
7 "./static/detection/retinaface_anchors−150x150.json").unwrap();
8 let img = face::img_read!("static/test−images/person.png");
9

10 let result = f.inference(&img).unwrap();
11

12 assert_eq!(result, vec![
13 FaceLandmarkProposal {
14 face: FaceProposal {
15 probability: 0.9986744,
16 facial_area: FacialArea {
17 topleft_x: 28.43473,
18 topleft_y: 35.666706,

https://git.ins.jku.at/proj/digidow/sensor-lib
https://git.ins.jku.at/proj/digidow/sensor-lib

8 When Theory Hits Reality: Living lab prototype and Digidow integration 127

19 bottomright_x: 97.406876,
20 bottomright_y: 134.69205
21 }
22 },
23 landmarks: Landmarks {
24 eye_left: Point {
25 x: 40.67421,
26 y: 78.70622
27 },
28 eye_right: Point {
29 x: 69.57788,
30 y: 76.26257
31 },
32 nose: Point {
33 x: 50.147636,
34 y: 97.665665
35 },
36 mouth_right: Point {
37 x: 46.10032,
38 y: 109.27576
39 },
40 mouth_left: Point {
41 x: 71.982925,
42 y: 106.96481
43 }
44 }
45 }
46]);

Face recognition For face recognition, face-lib utilizes Arcface, a highly ac-
curate algorithm chosen for its exceptional performance in extracting embed-
dings from detected faces (c.f. Listing 8.3.1). This model was specifically se-
lected and employed throughout this thesis due to its accuracy and robust-
ness in various biometric recognition tasks, as demonstrated in Chapter 3.1.2.
To illustrate the straightforward implementation of Arcfacewithin our library,
consider the following code example:

1 use face::Pipeline;
2 use face::img_read;
3 use face::detection::retinaface::Retinaface;
4 use face::recognition::arcface::ArcFace;
5

6 let mut pipeline = Pipeline::new(
7 Box::new(Retinaface::new("./static/detection/retinaface−150x150.tflite", "./

static/detection/retinaface_anchors−150x150.json").unwrap()),
8 Box::new(ArcFace::new("./static/recognition/arcface.tflite"))
9);
10 let img = img_read!("static/test−images/person.png");
11 let result = pipeline.calc_embs(&img);
12 assert_eq!(result.len(), 1);
13 assert_eq!(result[0], vec![0.2446, 0.135366, 0.6693452, ...]);

8 When Theory Hits Reality: Living lab prototype and Digidow integration 128

Visualization Visual feedback is crucial in certain scenarios, particularly dur-
ing the debugging and development phases of face detection and recognition
systems. To facilitate this, face-lib includes visualization capabilities that pro-
vide clear, graphical representations of the detection and recognition pro-
cesses. These visualization tools offer insights into the system performance,
allowing developers to:

Identify and troubleshoot potential issues in face detection

Verify the accuracy of facial landmark placement

Understand how different lighting conditions or facial orientations affect
the system’s performance

Fine-tune parameters for optimal results

To demonstrate these visualization features, consider the following code ex-
ample:

1 use face::visualization::Visualization;
2 use face::detection::fast_detection::Fastdet;
3

4 let mut f = Fastdet::new("static/detection/fastdet_320.onnx", 0.7, 320, 240).
unwrap();

5 let img = face::img_read!("static/test−images/group.webp");
6 let res = f.inference(&img).unwrap();
7 let mut vis = Visualization::new(img);
8 vis.add_det_results(&res);

When executed, this code generates a visual output as illustrated in Figure 8.5.

Figure 8.5: Face detection results using face-lib, showing bounding boxes, fa-
cial landmarks, and confidence scores for detected faces. Image
source: pxphere.com (CC0) https://pxhere.com/en/photo/1438955

https://pxhere.com/en/photo/1438955

8 When Theory Hits Reality: Living lab prototype and Digidow integration 129

8.3.2 sensor-lib

Source codeThis library is publicly available at https://git.ins.jku.at/proj/digidow/
face-lib and in Chapter A.

This libraryprovides essential functionalities for implementingaDigidowsen-
sor:

Registration: Allows entities to register with the sensor (c.f. Section 8.1.2).
Registrations are (optionally) automatically purged after a predefined
timeout period to prevent data bloat. Multiple registrations utilizing the
same identifier but having different callback URLs are possible. Upon a
successful biometric match, all specified callback URLs are simultaneously
notified.

REST Service: The library provides a REST interface over a SOCKS proxy
to manage registration requests, utilizing the Tor network to ensure se-
cure and anonymous communication. The interface of the sensor library is
designed to accept registration requests and includes a heartbeat mecha-
nism tomaintain an active connection. The system supports a single route:
a POST request to /v1/register, which requires the inclusion of a verifiable
presentation in the request body. Listing 8.3.2 illustrates an example of a
verifiable credential included in the VP. This presentation must be signed
by a trusted issuing authority to ensure its authenticity and integrity.

1 Object {
2 "@context": Array [
3 String("https://www.w3.org/2018/credentials/v1"),
4 String("https://digidow.eu/v1"),
5],
6 "credentialSubject": Object {
7 "datetime": String("2024−08−14T14:32:28UTC"),
8 "door−id": String("42"),
9 "identity": // embedding; removed for brevity,

10 "proposed−verifiers": Array [
11 String("verifier.onion"),
12],
13 },
14 "expirationDate": String("2024−08−14T14:32:28UTC"),
15 "issuanceDate": String("2024−08−14T14:32:28UTC"),
16 "issuer": String("Self"),
17 "proof": // removed for brevity,
18 "type": String("door−opening−data"),
19 }

Verifiable Presentations (VPs) [198]: Utilizes VPs for secure and verifiable
exchanges during both registration and sensor push notifications to ensure
data integrity and trustworthiness. The sensor has a list of trusted issuing
authorities. When the sensor receives a registration, it verifies whether the
registration is signed by one of these trusted issuing authorities. This ver-
ification is important because it ensures that only credentials from legit-

https://git.ins.jku.at/proj/digidow/face-lib
https://git.ins.jku.at/proj/digidow/face-lib

8 When Theory Hits Reality: Living lab prototype and Digidow integration 130

imate and recognized sources are accepted, thereby preventing unautho-
rized or malicious entities from registering. If the registration is not ver-
ified as being from a trusted authority, the sensor discards it and informs
the PIA accordingly.

Sensor push: Notifies the Personal Identity Agent (PIA) via a registered
callback URL when a person is detected by the sensor. We do this in three
steps:

1. The process begins with the creation of a verifiable presentation. This
step involves retrieving the verifiable credentials (VCs) specific to the
sensor’s modality—such as face recognition data, whichmight include
embeddings and related intent information. The code snippet below il-
lustrates the procedure:

1 // Retrieve verifiable credentials for modality
2 let mut vcs = data.into();
3 for vc in &mut vcs {
4 // Sign them
5 vc.sign(&self.bbs_key_pair.secret_key, &self.bbs_key_pair.

public_key)?;
6 }
7

8 let mut vp = VerifiablePresentation::new(
9 vec![
10 super::vc::CONTEXT_W3.to_string(),
11 super::vc::CONTEXT_DIGIDOW.to_string(),
12],
13 Entity::Single("sensorpush".to_string()),
14 vcs,
15 Entity::Single(HashMap::new()),
16);

In this step, themodality-specific VCs are first retrieved. These creden-
tials are then individually signed by the sensor using its BBS key pair.
The signed VCs ensure that the recipient PIA can transfer the signed
credentials to a potential verifier securely, with the guarantee, that it
was created by the sensor. Finally, the individually signed VCs are ag-
gregated into a single verifiable presentation (VP).

2. Once the VP is created, it must be signed to ensure its authenticity and
integrity. The VP is signed using the sensor’s BBS key pair, as demon-
strated in the following code snippet:

1 vp.sign(&self.bbs_key_pair.secret_key, &self.bbs_key_pair.public_key)?;

3. Thefinal step involves sending the signed VP to the PIA via the specified
callback URL. This is carried out using an HTTP POST request, which
is sent through a Tor socks proxy to ensure privacy and security. The
relevant code for this process is as follows:

1 std::thread::spawn(move || {
2 debug!("Sending VP to {}: {}", url.onion_address, &json!(vp));
3

8 When Theory Hits Reality: Living lab prototype and Digidow integration 131

4 let proxy = ureq::Proxy::new("socks5://localhost:9050").expect("Valid
proxy string");

5

6 let agent = ureq::AgentBuilder::new()
7 .timeout(std::time::Duration::from_secs(timeout_in_seconds))
8 .proxy(proxy)
9 .build();
10

11 match agent
12 .post(&format!("{}/v1/sensor−push", url.onion_address))
13 .send_json(json!(vp))
14 {
15 Ok(resp) => {
16 info!("PIA received sensor push successfully: {:?}", resp);
17 }
18 // Error handling removed for brevity
19 };
20 });

In this step, a new thread is spawned to handle the transmission of the
VP. The VP is serialized into JSON format and sent to the PIA through
the specified callbackURLusing the ureq library. A SOCKS5proxy is em-
ployed to enhance the security of the data transmission. Upon success-
ful delivery, the PIA acknowledges receipt of the VP, as indicated by the
log messages.

Digidow utilizes Tor for all communications to ensure network anonymity and
enhance security [89]. Tor’s anonymizing network helps protect the privacy of
both the Personal Identity Agents (PIAs) and the sensors, and furthermore, its
onion service makes it easier to reach and communicate securely.

To further bolster the security and trustworthiness of the system,Digidowem-
ploys a security architecture based on a hardware root of trust, secure boot
mechanisms, and continuousOS integrity verification for the sensor. These se-
curitymeasures ensure that the system operates within a trusted environment
before any sensitive data is handled or transmitted.

The hardware root of trust is established through the use of a Trusted Platform
Module (TPM),whichunderpins the securebootprocessbyverifyingeachstage
of the system’s startup. This process ensures that any unauthorizedmodifica-
tions to the system are detected early, preventing compromised systems from
functioning. Once the system is operational, continuous integrity checks are
performed to ensure that the operating system remains in a known and trusted
state, thereby maintaining the integrity of the environment in which the PIAs
and sensors operate. These concepts alignwith broader research on system in-
tegrity and attestation in secure environments, as discussed in a previousmas-
ter thesis on this subject [164].

Furthermore, we implement a timeout mechanism for Tor communications to
maintain robust and reliable operations. If a sensor push notification is not
completed within the specified timeout, it will be dropped to avoid indefinite
delays. Additionally, a heartbeatmechanism is used to keep the connection ac-
tive and prevent unintended disconnections.

8 When Theory Hits Reality: Living lab prototype and Digidow integration 132

All communications are secured using verifiable presentations (VPs) and veri-
fiable credentials [198]. By signing each VP, we guarantee the authenticity and
integrity of the data, ensuring that the recipient can confidently verify that the
VP originated from the designated sensor. The sensor stores its cryptographic
keys on the device itself, which is protected by full-disk encryption to ensure
that the keys remain secure.

The REST service in sensor-lib handles the registration process and accepts
andmanages registration requests. Registrations are automatically deleted af-
ter a predefined period to prevent data bloat and ensure the system remains
efficient. This automatic deletion mechanism also enhances security by mini-
mizing the duration for which sensitive biometric data is stored. Additionally,
by limiting the retention period, the systemmakes itmore challenging to esti-
mate the number of unique individuals whomay have interacted with the sen-
sor, further protecting the privacy of those individuals.

Upon receiving a “sensing received” signal, the library performs a biometric
match against all registered identifiers. It then creates a VP for eachmatch and
sends the resulting VPs to the specified callback addresses in the registration,
ensuring timely and secure delivery of authentication results.

8.3.3 Sensor orchestration

The sensor component integrates the functionalities provided by the face-lib
and sensor-lib libraries, orchestrating the overall system operation. There are
two main types of sensors in our setup, each tailored to specific deployment
scenarios:

1. Single door sensors: These sensors are mounted directly above or around
individual doors andare responsible for recognizing individuals attempting
to gain access. They employ two primary filters to enhance accuracy and
security:

a) Nose location filter: This filter ensures that the nose is within a specific
image area, allowing the operator to focus the sensor’s detection ca-
pability on designated subareas. This is crucial for excluding irrelevant
areas such as public walkways and concentrating solely on the entrance
area, thereby reducing false triggers and enhancing security.

b) Minimum face area filter: This filter acts as a proxy for intent detection
by requiring the person to be within a certain proximity before the sys-
tem initiates the unlocking process. As the person approaches the door,
the sizeof their face in the image increases.By settinga threshold for the
minimum face area, the system can ensure that only individuals close
enough to the door will trigger the unlocking mechanism.

2. Hallway sensors: These sensors are designed to manage multiple doors
within a corridor or hallway. They utilize the 2D coordinates of the doors
and individuals’ nose heights to calculate the distance to each door. The
system assumes that the closest door within a predefined threshold is the

8 When Theory Hits Reality: Living lab prototype and Digidow integration 133

Figure 8.6: Performance analysis of the full face recognition pipeline. (Top)
Boxplot showing the distribution of processing times for the com-
plete pipeline, including image acquisition, face detection, feature
extraction, andmatching against registered embeddings. (Bottom)
Probability density function of processing times, highlighting the
overall speed distribution of the system.

intended target for access. This setup allows for efficient and accurate de-
tection of individuals’ intentions in a more complex environment with
multiple access points.

8.4 Results

The living labprototype successfully demonstrated thepractical viability of our
decentralized biometric authentication system. Performance testing was con-
ducted on the Jetson Nano hardware platform, processing video streams from
4k and lower-quality cameras across multiple scenarios (c.f. Fig. 8.6).

The results provide evidence for the real-world applicability of the theoretical
advancements developed throughout this thesis.

Key findings from our prototype evaluation include:

Frame rate: The system achieved a consistent 3 frames per second (FPS)
processing rate across all cameras. This meets the minimum threshold of
3–5 FPS suggested by Stewart et al. [199] for responsive real-time systems.

Local processing: All computations, including face detection, recognition,
and authentication logic,were performed entirely on the JetsonNanowith-
out offloading to external GPU servers. This validates the feasibility of
edge-based biometric processing, which is crucial for:u Energy efficiency: Minimizing power consumption, with the entire

pipeline consuming only 10.82 watts, including data transmission and
centralized processing.

8 When Theory Hits Reality: Living lab prototype and Digidow integration 134

u Scalability: Enabling a wide variety of sensors to be deployed without
reliance on centralized infrastructure.u Privacy enhancement: Minimizing the transmission of sensitive bio-
metric data across networks.

Accuracy: Utilizing the optimized face detection pipeline developed in
Chapter 7, the system achieved 98.3 % accuracy on the LFW dataset. This
approaches the 99.3% baseline of unoptimizedmodels, which require over
1.5minutes to process a single frame. Theminimal accuracy trade-off for a
significant performance gain (from 90 seconds to 0.33 seconds per frame)
demonstrates the effectiveness of our optimization strategies.

Network challenges: The prototype implementation revealed that Tor,
while crucial for anonymity, introduced significant latency. Sensor push
notifications could take up to 10 seconds to traverse the Tor network, re-
sulting in noticeable delays for users awaiting door access. This highlighted
theneed to balance securitymeasureswith usability considerations in real-
world deployments.

Connection management: The prototype exposed the necessity for imple-
menting a heartbeatmechanism tomaintain active Tor connections.With-
out this, connections would prematurely close, disrupting the system’s
functionality.

These results provide strong empirical evidence for the viability of decen-
tralized, privacy-preserving biometric authentication systems on embedded
hardware platforms. They highlight the practical impact of the theoretical im-
provements developed throughout this thesis, demonstrating their effective-
ness in addressing real-world challenges.

The prototype’s performance in both the hallway and single-door scenarios
further illustrates the system’s adaptability to different environmental con-
texts. This versatility is crucial for widespread adoption across various appli-
cations, from secure facility access to border access control.

While these results are highly promising, it is important to acknowledge that
further optimization and long-term testing in diverse real-world environ-
ments will be necessary to validate the system’s robustness and scalability
fully. Nonetheless, the current prototype provides a solid foundation for future
research and development in decentralized biometric authentication systems.

Chapter 9

Conclusion and outlook

9.1 Conclusion

After the extensive research presented in this thesis, it is time to step back
and evaluate how well the work aligns with the broader objectives outlined at
the beginning. The overarching aim was to develop a decentralized biometric
authentication system that not only enhances privacy but also improves effi-
ciency and scalability. The work presented here has laid down a solid founda-
tion, demonstrating that decentralization is both a viable and necessary evo-
lution for modern, privacy-focused biometric systems.

Central to our research was the focus on developing efficient sensors for bio-
metric authentication. This emphasis stems from the observation, that the
sensor represents the first point of interaction and a potential bottleneck. Ef-
ficient sensors are important, because in a decentralized architecture, where
processing may occur on edge devices rather than centralized servers, re-
source constraints become a significant consideration. By optimizing sensor
efficiency, we can reduce computational demands, lower power consump-
tion, and ultimately make decentralized biometric systems more feasible and
widespread.

Our approach to enhancing sensor efficiency was multifaceted, address-
ing various aspects of the biometric authentication pipeline. We began by
examining the fundamental building blocks—the facial features and their
representations—and progressively built up to system-level optimizations
and a flexible framework for sensor integration.

Our research journey began by challenging conventional wisdom in facial
recognition technology. We demonstrated that facial embeddings could be
significantly reduced in size while maintaining comparable accuracy levels,
a finding that opens new possibilities for biometric systems in resource-
constrained environments. Building on this foundation, we proposed em-
bedding fusion techniques that are computationally efficient, even on low-
resource devices. As our work progressed, we expanded our focus to system-
wide improvements. Thedevelopmentof anefficient facedetectionpipeline for
embedded systems and the introduction of the Domain-Specific Sensor Lan-
guage (BioDSSL) represent steps towards more adaptable biometric systems.
These advancements aim to facilitate easier integration of biometric authen-
tication in various applications, balancing security needs with practical con-
straints.

135

9 Conclusion and outlook 136

The true test of our research came with its real-world implementation. This
real-world implementationvalidatedour theoretical constructs and integrated
the developed techniques into a functional system. This phase of our research
provided practical insights into the challenges of deploying decentralized bio-
metric systems, showcasing the robustnessof our approachesand thepotential
for scalability and privacy enhancements.

Lookingahead, thedecentralized frameworkwehavedevelopedoffersapoten-
tial path for addressing some of the current challenges in biometric authenti-
cation. As digital identity and access control continue to evolve, our research
provides insights that may be valuable for future developments in the field.

In conclusion, this thesis presents a series of targeted advancements in bio-
metric authentication, with a focus on decentralization and efficiency. By of-
fering solutions to specific challenges and exploring new approaches, we’ve
contributed to the ongoing improvement of biometric systems. As the field
continues to evolve, theworkpresentedhere serves as a stepping stone towards
more secure, efficient, and privacy-aware biometric authentication methods.

These contributions collectively advance the field of biometric authentication,
particularly in the context of decentralized and privacy-preserving systems.

9.2 Future work

Aswith any journey, the path laid out in this thesis opens up new directions for
exploration, offering exciting prospects for future research and development.

One immediate direction involves the completion and publication of a detailed
survey, grounded in the foundational work laid out in Section 2.1. This sur-
vey aims to consolidate the insights gained, offering a comprehensive overview
that can serve as a reference point for future research.

Another promising avenue lies in enhancing biometric recognition systems by
refining the training of models, specifically through the implementation of a
more constrained output or embedding layer. Such an approach is expected to
streamline the inference process, reducing the dependency on extensive post-
processing, which in turn could lead to improvements in both the accuracy and
speed of these systems.

Additionally, the innovative method proposed in this thesis for aggregating
embeddings from different neural networks is ripe for further investigation.
Future research could explore the application of similar aggregation tech-
niques across various biometric modalities or within multi-modal systems.
This holds the potential to create more robust and versatile recognition sys-
tems, capable of delivering higher performance in diverse real-world scenar-
ios.

Bibliography

[1] 2016. Procedia Computer Science, 85, (January 2016), 109–116. ISSN:
1877-0509. DOI: 10.1016/j.procs.2016.05.187.

[2] Goutham Reddy Alavalapati et al. 2016. Biometric authentication using
near infrared hand vein pattern with adaptive threshold technique. In
2016 2nd International Conference on Applied and Theoretical Computing
and Communication Technology (iCATccT). IEEE, pp. 229–234.

[3] Ghazel Albakri and Sharifa Alghowinem. 2019. The effectiveness of
depth data in liveness face authentication using 3D sensor cameras.
Sensors, 19, 8, 1928.

[4] A Tahseen Ali, Hasanen S Abdullah, and Mohammad N Fadhil. 2021.
Voice recognition system using machine learning techniques. Materi-
als Today: Proceedings, 1–7.

[5] Kamran Ali, Alex X Liu, Wei Wang, and Muhammad Shahzad. 2015.
Keystroke recognition using wifi signals. In Proceedings of the 21st
annual international conference on mobile computing and networking,
pp. 90–102.

[6] Aishat Aloba, Sarah Morrison-Smith, Aaliyah Richlen, Kimberly
Suarez, Yu-Peng Chen, Jaime Ruiz, and Lisa Anthony. 2023. Multi-
modal User Authentication in Smart Environments: Survey of User
Attitudes. arXiv preprint arXiv:2305.03699.

[7] JAndrews,AVakil, and JLi. 2020.Biometric authenticationandstation-
ary detection of human subjects by deep learning of passive infrared
(PIR) sensor data. In 2020 IEEE Signal Processing inMedicine and Biology
Symposium (SPMB). IEEE, pp. 1–6.

[8] K Annapurani, C Malathy, Hardeep Singh, and Dhiraj J Rathod. 2016.
Face Authentication Systemof Thermal ImagewithGabor Filter. Indian
Journal of Science and Technology.

[9] Patricia Arias-Cabarcos, Christian Krupitzer, and Christian Becker.
2019. A survey on adaptive authentication. ACM Computing Surveys
(CSUR), 52, 4, 1–30.

[10] Sercan Ö Arık, Mike Chrzanowski, Adam Coates, Gregory Diamos, An-
drew Gibiansky, Yongguo Kang, Xian Li, John Miller, Andrew Ng,
Jonathan Raiman, et al. 2017. Deep voice: Real-time neural text-to-
speech. In International conference onmachine learning. PMLR, pp. 195–
204.

[11] MuhammadArsalan,HyungGilHong,RizwanAliNaqvi,MinBeomLee,
Min Cheol Kim, Dong Seop Kim, Chan Sik Kim, and Kang Ryoung Park.
2017. Deep learning-based iris segmentation for iris recognition in vis-
ible light environment. Symmetry, 9, 11, 263.

137

https://doi.org/10.1016/j.procs.2016.05.187

Bibliography 138

[12] S Athira and OV Ramana Murthy. 2018. Face authentication using
thermal imaging. In Computational Vision and Bio Inspired Computing.
Springer, pp. 1006–1014.

[13] Tarryn Balsdon, Stephanie Summersby, Richard I Kemp, and David
White. 2018. Improving face identification with specialist teams. Cog-
nitive Research: Principles and Implications, 3, 1, 1–13.

[14] Ankan Bansal, Anirudh Nanduri, Carlos D Castillo, Rajeev Ranjan, and
Rama Chellappa. 2017. Umdfaces: An annotated face dataset for train-
ing deep networks. In IEEE International Joint Conference on Biometrics
(IJCB). IEEE, pp. 464–473. DOI: 10.1109/BTAS.2017.8272731.

[15] FBattaglia, Giancarlo Iannizzotto, andLLoBello. 2014. A biometric au-
thenticationsystembasedon face recognitionand rfid tags.MondoDig-
itale, 13, 49, 340–346.

[16] John Berry and David A Stoney. 2001. The history and development of
fingerprinting. Advances in fingerprint Technology, 2, 13–52.

[17] Samarth Bharadwaj, Mayank Vatsa, and Richa Singh. 2014. Biometric
quality: a review of fingerprint, iris, and face. EURASIP journal on Image
and Video Processing, 2014, 1, 1–28.

[18] Ramon Blanco-Gonzalo, Oscar Miguel-Hurtado, Chiara Lunerti,
Richard M Guest, Barbara Corsetti, Elakkiya Ellavarason, and Raul
Sanchez-Reillo. 2019. Biometric systems interaction assessment: the
state of the art. IEEE Transactions on Human-Machine Systems, 49, 5,
397–410.

[19] Jorge Blasco, Thomas M Chen, Juan Tapiador, and Pedro Peris-Lopez.
2016. A survey of wearable biometric recognition systems. ACM Com-
puting Surveys (CSUR), 49, 3, 1–35.

[20] GhoroubTalal Bostaji andEmadSami Jaha. 2023. Fine-Grained Soft Ear
Biometrics for Augmenting Human Recognition. Computer Systems Sci-
ence & Engineering, 47, 2.

[21] Jason Boyd, Muhammad Fahim, and Oluwafemi Olukoya. 2023. Voice
spoofing detection for multiclass attack classification using deep
learning.Machine Learning with Applications, 14, 100503.

[22] Hervé Bredin and Antoine Laurent. 2021. End-to-end speaker
segmentation for overlap-aware resegmentation. arXiv preprint
arXiv:2104.04045.

[23] Sandrine Brognaux and Thomas Drugman. 2015. HMM-based speech
segmentation: Improvements of fully automatic approaches. IEEE/ACM
Transactions on Audio, Speech, and Language Processing, 24, 1, 5–15.

[24] Ulrich Burgbacher, Manuel Prätorius, and Klaus Hinrichs. 2014. A be-
havioral biometric challenge and response approach to user authen-
tication on smartphones. In 2014 IEEE International Conference on Sys-
tems, Man, and Cybernetics (SMC). IEEE, pp. 3328–3335.

[25] Minjie Cai, Feng Lu, and Yoichi Sato. 2020. Generalizing hand segmen-
tation in egocentric videos with uncertainty-guidedmodel adaptation.
In Proceedings of the ieee/cvf conference on computer vision and pattern
recognition, pp. 14392–14401.

https://doi.org/10.1109/BTAS.2017.8272731

Bibliography 139

[26] Kai Cao and Anil K Jain. 2015. Latent orientation field estimation via
convolutional neural network. In 2015 International Conference on Bio-
metrics (ICB). IEEE, pp. 349–356.

[27] QiongCao, Li Shen,Weidi Xie, OmkarMParkhi, andAndrewZisserman.
2018. VGGFace2: A Dataset for Recognising Faces across Pose and Age.
In 13th IEEE International Conference on Automatic Face & Gesture Recog-
nition (FG 2018). IEEE, pp. 67–74. DOI: 10.1109/FG.2018.00020.

[28] V Vanitha Carmel and D Akila. 2020. A survey on biometric authentica-
tionsystems in cloud to combat identity theft. Journal of Critical Reviews,
7, 03, 540–547.

[29] Veena Chandran and Philomina Simon. 2019. Review on dental image
based biometric system. In Proceedings of the Third International Con-
ference on Advanced Informatics for Computing Research, pp. 1–6.

[30] Parag Chatterjee and Asoke Nath. 2015. Biometric authentication for
UID-based smart andubiquitous services in India. In 2015 Fifth Interna-
tional Conference on Communication Systems and Network Technologies.
IEEE, pp. 662–667.

[31] Yi Chen, Sarat C Dass, and Anil K Jain. 2005. Fingerprint quality indices
for predicting authentication performance. In International conference
on audio-and video-based biometric person authentication. Springer,
pp. 160–170.

[32] Megha Chhabra, Kiran Kumar Ravulakollu, Manoj Kumar, Abhay
Sharma, and Anand Nayyar. 2023. Improving automated latent fin-
gerprint detection and segmentation using deep convolutional neural
network. Neural Computing and Applications, 35, 9, 6471–6497.

[33] Hyunsoek Choi, Hyeyoung Park, et al. 2015. Amultimodal user authen-
tication system using faces and gestures. BioMed research international,
2015.

[34] Swati K. Choudhary and Ameya K. Naik. 2019. Multimodal Biometric
Authentication with Secured Templates — A Review. In 2019 3rd In-
ternational Conference on Trends in Electronics and Informatics (ICOEI).
(April 2019), pp. 1062–1069. DOI: 10.1109/ICOEI.2019.8862563.

[35] Aruni Roy Chowdhury, Tsung-Yu Lin, Subhransu Maji, and Erik
Learned-Miller. 2016. One-to-many face recognition with bilinear
cnns. In 2016 IEEE Winter Conference on Applications of Computer Vision
(WACV). IEEE, pp. 1–9.

[36] Simon A Cole et al. 2009. Suspect identities: A history of fingerprinting and
criminal identification. Harvard University Press.

[37] Vincenzo Conti, C Militello, and S Vitabile. 2017. Biometric authentica-
tion overview: a fingerprint recognition sensor description. Int J Biosen
Bioelectron, 2, 1, 26–31.

[38] Rodrigo Colnago Contreras, Monique Simplicio Viana, and Rodrigo
CapobiancoGuido. 2023. An Experimental Analysis onMapping Strate-
gies for Cepstral Coefficients Multi-projection in Voice Spoofing De-
tection Problem. In International Conference on Artificial Intelligence and
Soft Computing. Springer, pp. 291–306.

https://doi.org/10.1109/FG.2018.00020
https://doi.org/10.1109/ICOEI.2019.8862563

Bibliography 140

[39] D. Crocker and P. Overell. 2008. Augmented BNF for Syntax Specifi-
cations: ABNF. RFC 5234. Internet Engineering Task Force, (January
2008). https://www.rfc-editor.org/rfc/rfc5234.txt.

[40] Adam Czajka. 2015. Pupil dynamics for iris liveness detection. IEEE
Transactions on Information Forensics and Security, 10, 4, 726–735.

[41] Adam Czajka and Pawel Bulwan. 2013. Biometric verification based on
hand thermal images. In 2013 International Conference on Biometrics
(ICB). IEEE, pp. 1–6.

[42] Naser Damer, Jonas Henry Grebe, Cong Chen, Fadi Boutros, Florian
Kirchbuchner, and Arjan Kuijper. 2020. The effect of wearing a mask
on face recognition performance: an exploratory study. In 2020 Inter-
national Conferenceof theBiometrics Special Interest Group (BIOSIG). IEEE,
pp. 1–6.

[43] Antitza Dantcheva, Petros Elia, and Arun Ross. 2015. What else does
your biometric data reveal? A survey on soft biometrics. IEEE Transac-
tions on Information Forensics and Security, 11, 3, 441–467.

[44] Shaveta Dargan and Munish Kumar. 2020. A comprehensive survey on
the biometric recognition systems based on physiological and behav-
ioral modalities. Expert Systems with Applications, 143, 113114.

[45] Shaveta Dargan and Munish Kumar. 2020. A comprehensive survey
on the biometric recognition systems based on physiological and be-
havioral modalities. Expert Systems with Applications, 143, (April 2020),
113114. ISSN: 0957-4174. DOI: 10.1016/j.eswa.2019.113114.

[46] Ashok Kumar Das, Sherali Zeadally, and Mohammad Wazid. 2017.
Lightweight authentication protocols for wearable devices. Computers
& Electrical Engineering, 63, 196–208.

[47] Priyanka Das, JosephMcFiratht, Zhaoyuan Fang, Aidan Boyd, Ganghee
Jang, Amir Mohammadi, Sandip Purnapatra, David Yambay, Sébastien
Marcel, Mateusz Trokielewicz, et al. 2020. Iris liveness detection com-
petition (livdet-iris)-the 2020 edition. In 2020 IEEE international joint
conference on biometrics (IJCB). IEEE, pp. 1–9.

[48] JohnDaugman. 2009. How iris recognitionworks. In The essential guide
to image processing. Elsevier, pp. 715–739.

[49] Hugh Davson. 1990. Physiology of the Eye. Bloomsbury Publishing.

[50] Jiankang Deng, Jia Guo, Evangelos Ververas, Irene Kotsia, and Ste-
fanos Zafeiriou. 2020. Retinaface: Single-shotMulti-Level Face Local-
isation in the Wild. In IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pp. 5202–5211. DOI: 10.1109/CVPR42600.2020
.00525.

[51] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou. 2019.
ArcFace: Additive Angular Margin Loss for Deep Face Recognition. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 4685–4694. DOI: 10.1109/CVPR.2019.00482.

https://www.rfc-editor.org/rfc/rfc5234.txt
https://doi.org/10.1016/j.eswa.2019.113114
https://doi.org/10.1109/CVPR42600.2020.00525
https://doi.org/10.1109/CVPR42600.2020.00525
https://doi.org/10.1109/CVPR.2019.00482

Bibliography 141

[52] JiankangDeng, Jia Guo, NiannanXue, and Stefanos Zafeiriou. 2019. Ar-
cface: Additive angular margin loss for deep face recognition. In Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recog-
nition, pp. 4690–4699.

[53] Jiankang Deng, Jia Guo, Yuxiang Zhou, Jinke Yu, Irene Kotsia, and Ste-
fanos Zafeiriou. 2019. Retinaface: Single-stage dense face localisation
in the wild. arXiv preprint arXiv:1905.00641.

[54] Department of Defense. 2000. Human engineering design data digest.
Accessed April 3, 2023. https://apps.dtic.mil/sti/pdfs/ADA467401.pdf.
(2000).

[55] Arindam Dutta, Rohit Lal, Dripta S Raychaudhuri, Calvin-Khang Ta,
and Amit K Roy-Chowdhury. 2024. POISE: Pose GuidedHuman Silhou-
ette Extraction under Occlusions. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pp. 6153–6163.

[56] Simon Eberz, Giulio Lovisotto, Andrea Patane, Marta Kwiatkowska,
Vincent Lenders, and Ivan Martinovic. 2018. When your fitness tracker
betrays you: Quantifying the predictability of biometric features across
contexts. In 2018 IEEE Symposium on Security and Privacy (SP). IEEE,
pp. 889–905.

[57] Faouzia Ennaama, Khalid Benhida, Ahmed Boulahoual, Ahmed Benta-
jer,HedabouMustapha, and Said Elfezazi. 2019. Comparative and anal-
ysis study of biometric systems. Journal of Theoretical and Applied Infor-
mation Technology, 97, 12.

[58] europa.eu. 2023. Entry/Exit System (EES). Accessed April 3, 2023. https
://home-affairs.ec.europa.eu/policies/schengen-borders-and-visa/s
mart-borders/entry-exit-system_en. (2023).

[59] Jude Ezeobiejesi and Bir Bhanu. 2017. Latent fingerprint image seg-
mentationusing deepneural network.Deep Learning for Biometrics, 83–
107.

[60] Zhenyu Fang, Jinchang Ren, Stephen Marshall, Huimin Zhao, Zheng
Wang, KaizhuHuang, and Bing Xiao. 2020. Triple loss for hard face de-
tection. Neurocomputing, 398, 20–30.

[61] Sachin Sudhakar Farfade, Mohammad J Saberian, and Li-Jia Li. 2015.
Multi-view face detection using deep convolutional neural networks.
In Proceedings of the 5th ACM on International Conference on Multimedia
Retrieval, pp. 643–650. DOI: 10.48550/arXiv.1502.02766.

[62] YuantaoFeng, Shiqi Yu,HanyangPeng,Yan-RanLi, and JianguoZhang.
2022. Detect Faces Efficiently: A Survey and Evaluations. IEEE Transac-
tions on Biometrics, Behavior, and Identity Science, 4, 1, 1–18. DOI: 10.110
9/TBIOM.2021.3120412.

[63] Julian Fierrez-Aguilar, Javier Ortega-Garcia, Joaquin Gonzalez-
Rodriguez, and Josef Bigun. 2005. Discriminative multimodal bio-
metric authentication based on quality measures. Pattern recognition,
38, 5, 777–779.

https://apps.dtic.mil/sti/pdfs/ADA467401.pdf
https://home-affairs.ec.europa.eu/policies/schengen-borders-and-visa/smart-borders/entry-exit-system_en
https://home-affairs.ec.europa.eu/policies/schengen-borders-and-visa/smart-borders/entry-exit-system_en
https://home-affairs.ec.europa.eu/policies/schengen-borders-and-visa/smart-borders/entry-exit-system_en
https://doi.org/10.48550/arXiv.1502.02766
https://doi.org/10.1109/TBIOM.2021.3120412
https://doi.org/10.1109/TBIOM.2021.3120412

Bibliography 142

[64] Rainhard Dieter Findling and Rene Mayrhofer. 2013. Towards pan shot
face unlock: Using biometric face information from different perspec-
tives to unlock mobile devices. International Journal of Pervasive Com-
puting and Communications.

[65] Andrian Firmansyah, Tien Fabrianti Kusumasari, and Ekky Novriza
Alam. 2023. Comparison of face recognition accuracy of ArcFace,
FaceNet and FaceNet512 models on deepface framework. In 2023 In-
ternational conference on computer science, information technology and
engineering (ICCoSITE). IEEE, pp. 535–539.

[66] Simon Fong, Yan Zhuang, and Iztok Fister. 2013. A biometric authenti-
cationmodel using hand gesture images. Biomedical engineering online,
12, 1, 1–18.

[67] Shilpa Garg, Sumit Mittal, Pardeep Kumar, and Vijay Anant Athavale.
2020. DeBNet: multilayer deep network for liveness detection in face
recognition system. In 2020 7th International Conference on Signal Pro-
cessing and Integrated Networks (SPIN). IEEE, pp. 1136–1141.

[68] Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wort-
man Vaughan, HannaWallach, Hal Daumé Iii, and Kate Crawford. 2021.
Datasheets for datasets. Communications of the ACM, 64, 12, 86–92.

[69] Emad Sami Jaha Ghoroub Talal Bostaji. 2023. Fine-Grained Soft Ear
Biometrics for Augmenting Human Recognition. Computer Systems Sci-
ence and Engineering, 47, 2, 1571–1591. DOI: 10.32604/csse.2023.03970
1. http://www.techscience.com/csse/v47n2/53647.

[70] A Jay Goldstein, LeonDHarmon, and AnnB Lesk. 1971. Identification of
human faces. Proceedings of the IEEE, 59, 5, 748–760.

[71] Sixue Gong, Yichu Shi, NathanDKalka, and Anil K Jain. 2019. Video face
recognition: Component-wise feature aggregation network (c-fan). In
2019 International Conference on Biometrics (ICB). IEEE, pp. 1–8.

[72] Yandong Guo, Lei Zhang, Yuxiao Hu, Xiaodong He, and Jianfeng Gao.
2016. Ms-celeb-1m: A dataset and benchmark for large-scale face
recognition. In Computer Vision–ECCV 2016: 14th European Conference,
Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part III 14.
Springer, pp. 87–102.

[73] MohamedHammad, YashuLiu, andKuanquanWang. 2018.Multimodal
biometric authentication systems using convolution neural network
based on different level fusion of ECG and fingerprint. IEEE Access, 7,
26527–26542.

[74] Md Khaled Hasan, Md Shamim Ahsan, SH Shah Newaz, and Gyu My-
oungLee. 2021.Human face detection techniques: A comprehensive re-
view and future research directions. Electronics, 10, 19, 2354.

[75] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep
residual learning for image recognition. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pp. 770–778. DOI:
10.1109/CVPR.2016.90.

[76] Brook Heisler. 2014. criterion.rs: Statistics-driven benchmarking li-
brary for Rust. https://github.com/bheisler/criterion.rs. (2014).

https://doi.org/10.32604/csse.2023.039701
https://doi.org/10.32604/csse.2023.039701
http://www.techscience.com/csse/v47n2/53647
https://doi.org/10.1109/CVPR.2016.90
https://github.com/bheisler/criterion.rs

Bibliography 143

[77] S Hemalatha. 2020. A systematic review on Fingerprint based Biomet-
ric Authentication System. In 2020 International Conference on Emerg-
ing Trends in Information Technology and Engineering (ic-ETITE). IEEE,
pp. 1–4.

[78] Hofer, Philipp. 2021. Analysis of state-of-the-art off-the-shelve face
recognition pipelines. Technical report. Johannes Kepler University
Linz, Institute of Networks and Security, Christian Doppler Laboratory
for Private Digital Authentication in the Physical World, (March 2021).
https://www.digidow.eu/publications/2021-hofer-tr-analysisfacerec
ognitionpipelines/Hofer_2021_AnalysisFaceRecognitionPipelines.pd
f.

[79] Hofer, Philipp. 2023. Dezentrale Gesichtserkennung.OCG Journal, 48, 1,
(April 2023), 14–15. https://www.ocg.at/sites/ocg.at/files/medien/pdf
s/OJ2023-01.pdf.

[80] Hofer, Philipp. 2022. Die Bedeutung verschiedener Gesichtsteile
für Gesichtserkennung und dessen Zusammenführung. In IKT-
Sicherheitskonferenz 2022. Vienna, Austria, (September 2022). https
://www.digidow.eu/publications/2022-hofer-iktsicherheitskonferen
z/Hofer_2022_IKTSicherheitskonferenz2022_Poster.pdf.

[81] Hofer, Philipp. 2021. Face recognition: Increase accuracy by filtering
images with heuristics. Technical report. Johannes Kepler University
Linz, Institute of Networks and Security, Christian Doppler Laboratory
for Private Digital Authentication in the Physical World, (July 2021). ht
tps://www.digidow.eu/publications/2021-hofer-tr-increasefacerecog
nitionaccuracy/Hofer_2021_IncreaseFaceRecognitionAccuracy.pdf.

[82] Hofer, Philipp, Michael Roland, RenéMayrhofer, and Philipp Schwarz.
2023. Optimizing Distributed Face Recognition Systems through Effi-
cient Aggregation of Facial Embeddings. Advances in Artificial Intelli-
gence and Machine Learning, 3, 1, (February 2023), 693–711. DOI: 10.5
4364/AAIML.2023.1146.

[83] Hofer, Philipp, Michael Roland, Philipp Schwarz, and RenéMayrhofer.
2023. Efficient Aggregation of Face Embeddings for Decentralized
Face Recognition Deployments. In Proceedings of the 9th International
Conference on Information Systems Security and Privacy (ICISSP 2023).
SciTePress, Lisbon, Portugal, (February 2023), pp. 279–286. DOI:
10.5220/0011599300003405.

[84] Hofer, Philipp, Michael Roland, Philipp Schwarz, and RenéMayrhofer.
2022. Efficient aggregation of face embeddings for decentralized face
recognition deployments (extended version). (December 2022). https:
//arxiv.org/abs/2212.10108.

[85] Hofer, Philipp, Michael Roland, Philipp Schwarz, Martin
Schwaighofer, and René Mayrhofer. 2021. Importance of different
facial parts for face detection networks. In 2021 9th IEEE International
Workshop on Biometrics and Forensics (IWBF). IEEE, Rome, Italy, (May
2021), pp. 1–6. DOI: 10.1109/IWBF50991.2021.9465087.

https://www.digidow.eu/publications/2021-hofer-tr-analysisfacerecognitionpipelines/Hofer_2021_AnalysisFaceRecognitionPipelines.pdf
https://www.digidow.eu/publications/2021-hofer-tr-analysisfacerecognitionpipelines/Hofer_2021_AnalysisFaceRecognitionPipelines.pdf
https://www.digidow.eu/publications/2021-hofer-tr-analysisfacerecognitionpipelines/Hofer_2021_AnalysisFaceRecognitionPipelines.pdf
https://www.ocg.at/sites/ocg.at/files/medien/pdfs/OJ2023-01.pdf
https://www.ocg.at/sites/ocg.at/files/medien/pdfs/OJ2023-01.pdf
https://www.digidow.eu/publications/2022-hofer-iktsicherheitskonferenz/Hofer_2022_IKTSicherheitskonferenz2022_Poster.pdf
https://www.digidow.eu/publications/2022-hofer-iktsicherheitskonferenz/Hofer_2022_IKTSicherheitskonferenz2022_Poster.pdf
https://www.digidow.eu/publications/2022-hofer-iktsicherheitskonferenz/Hofer_2022_IKTSicherheitskonferenz2022_Poster.pdf
https://www.digidow.eu/publications/2021-hofer-tr-increasefacerecognitionaccuracy/Hofer_2021_IncreaseFaceRecognitionAccuracy.pdf
https://www.digidow.eu/publications/2021-hofer-tr-increasefacerecognitionaccuracy/Hofer_2021_IncreaseFaceRecognitionAccuracy.pdf
https://www.digidow.eu/publications/2021-hofer-tr-increasefacerecognitionaccuracy/Hofer_2021_IncreaseFaceRecognitionAccuracy.pdf
https://doi.org/10.54364/AAIML.2023.1146
https://doi.org/10.54364/AAIML.2023.1146
https://doi.org/10.5220/0011599300003405
https://arxiv.org/abs/2212.10108
https://arxiv.org/abs/2212.10108
https://doi.org/10.1109/IWBF50991.2021.9465087

Bibliography 144

[86] Hofer, Philipp, Philipp Schwarz, Michael Roland, and RenéMayrhofer.
2024. BioDSSL: A Domain Specific Sensor Language for global, dis-
tributed, biometric identification systems. In 12th IEEE International
Conference on Intelligent Systems (IEEE IS 2024). IEEE, Golden Sands,
Bulgaria, (August 2024).

[87] Hofer, Philipp, Philipp Schwarz, Michael Roland, and RenéMayrhofer.
2023. Face to Face with Efficiency: Real-Time Face Recognition
Pipelines on Embedded Devices. In 21st International Conference on
Advances in Mobile Computing & Multimedia Intelligence (MoMM 2023).
ACM, Bali, Indonesia, (December 2023).

[88] Hofer, Philipp, Philipp Schwarz, Michael Roland, and RenéMayrhofer.
2024. Shrinking embeddings, not accuracy: Performance-Preserving
Reduction of Facial Embeddings for Complex Face Verification Compu-
tations. In 14th International Conference on Pattern Recognition Systems
(ICPRS 2024). IEEE, London, UK, (July 2024).

[89] Tobias Höller. 2022. A Privacy Preserving Networking Approach for Dis-
tributed Digital Identity Systems. PhD thesis. Johannes Kepler University
Linz, Institute of Networks and Security, Linz, Austria, (October 2022),
153 pages.

[90] Seng Chun Hoo and Haidi Ibrahim. 2019. Biometric-based attendance
tracking system for education sectors: A literature survey on hardware
requirements. Journal of Sensors, 2019.

[91] [n. d.] https://github.com/AIZOOTech/FaceMaskDetection.

[92] https://spec.torproject.org/tor-spec/preliminaries.html?highlight=msg-
len%20preliminaries#msg-len. 2024. Tor specifications: Message
lengths. Accessed May 5, 2024. (2024).

[93] Yang Hu, Konstantinos Sirlantzis, and Gareth Howells. 2016. Iris live-
ness detection using regional features. Pattern Recognition Letters, 82,
242–250.

[94] Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller.
2007. Labeled Faces in theWild: ADatabase for Studying Face Recogni-
tion in Unconstrained Environments. Technical report 07-49. Univer-
sity of Massachusetts, Amherst, (October 2007).

[95] Alberto Ibarrondo, Hervé Chabanne, and Melek Önen. 2022. Funshade:
Functional secret sharing for two-party secure thresholded distance
evaluation. Cryptology ePrint Archive.

[96] Aderonke Justina Ikuomola. 2015. Fingerprint-based authentication
system for time and attendance management. British Journal of Math-
ematics & Computer Science, 5, 6, 735.

[97] D Jagadiswary and D Saraswady. 2016. Biometric authentication using
fusedmultimodal biometric. Procedia Computer Science, 85, 109–116.

[98] Anil K Jain, Sarat C Dass, and Karthik Nandakumar. 2004. Can soft bio-
metric traits assist user recognition? In Biometric technology for human
identification. Volume 5404. Spie, pp. 561–572.

Bibliography 145

[99] AnilK Jain, SaratCDass, andKarthikNandakumar. 2004. Soft biometric
traits for personal recognition systems. In International conference on
biometric authentication. Springer, pp. 731–738.

[100] Zhe Jin,Meng-Hui Lim, AndrewBeng Jin Teoh, Bok-MinGoi, and Yong
Haur Tay. 2016. Generating Fixed-Length Representation FromMinu-
tiae Using Kernel Methods for Fingerprint Authentication. IEEE Trans-
actions on Systems, Man, and Cybernetics: Systems, 46, 10, 1415–1428.
DOI: 10.1109/TSMC.2015.2499725.

[101] Hanyung Jung, Soobin Sim, and Hyunkoo Lee. 2023. Biometric au-
thentication security enhancement under quantum dot light-emitting
diode display via fingerprint imaging and temperature sensing. Scien-
tific Reports, 13, 1, 794.

[102] Tarun K Kanakam, Ajith Jubilson, Brahmini Emani, Marthala Anuhya,
Sneha Sighakolli, Vandana Chintala, Kishan Vanamala, Deepak Kadiri,
Kushal Nayineni, and Paneerselvam Dhanavanthini. 2023. A concise
survey on biometric recognitionmethods. International Journal of Com-
puting and Digital Systems, 14, 1, 1–1.

[103] Byeongkeun Kang, Kar-Han Tan, Nan Jiang, Hung-Shuo Tai, Daniel
Tretter, and TruongNguyen. 2017. Hand segmentation for hand-object
interaction fromdepthmap. In 2017 IEEE global conference on signal and
information processing (GlobalSIP). IEEE, pp. 259–263.

[104] Nima Karimian, Paul A Wortman, and Fatemeh Tehranipoor. 2016.
Evolving authentication design considerations for the internet of bio-
metric things (IoBT). In Proceedings of the eleventh IEEE/ACM/IFIP inter-
national conference on hardware/software codesign and system synthesis,
pp. 1–10.

[105] M Killioğlu, M Taşkiran, and N Kahraman. 2017. Anti-spoofing in face
recognition with liveness detection using pupil tracking. In 2017 IEEE
15th International Symposium on Applied Machine Intelligence and Infor-
matics (SAMI). IEEE, pp. 000087–000092.

[106] Minchul Kim, Anil K Jain, and Xiaoming Liu. 2022. Adaface: Quality
adaptivemargin for face recognition. InProceedingsof the IEEE/CVF con-
ference on computer vision and pattern recognition, pp. 18750–18759.

[107] Davis E King. 2009. Dlib-ml: A machine learning toolkit. The Journal of
Machine Learning Research, 10, 1755–1758.

[108] Medikonda Asha Kiran, Padmatti Yogeshwari, Kosuru Viswa Bhavani,
andThudumuRamya. 2018. Biometric authentication: aholistic review.
In20182nd International Conference on I-SMAC (IoT in Social,Mobile, An-
alytics and Cloud)(I-SMAC) I-SMAC (IoT in Social, Mobile, Analytics and
Cloud)(I-SMAC), 2018 2nd International Conference on. IEEE, pp. 428–
433.

[109] Sheenam Kochar, Er Amarinder Kaur, and Banur SVIET. [n. d.] THE
SURVEY OF MULTI-MODEL BIOMETRIC AUTHENTICATION SYSTEM
DESIGN BASED ON HAAR WAVELETS AND SUPPORT VECTOR MA-
CHINE.

https://doi.org/10.1109/TSMC.2015.2499725

Bibliography 146

[110] AshuKumar, AmandeepKaur, andMunishKumar. 2019. Face detection
techniques: a review. Artificial Intelligence Review, 52, 927–948.

[111] AshuKumar,Munish Kumar, and Amandeep Kaur. 2021. Face detection
in still images under occlusion and non-uniform illumination. Multi-
media Tools and Applications, 80, 14565–14590. DOI: 10.1007/s11042-0
20-10457-9.

[112] Kunal Kumar andMohammed Farik. 2016. A review ofmultimodal bio-
metric authentication systems. Int. J. Sci. Technol. Res, 5, 12, 5–9.

[113] Ruggero Donida Labati, Angelo Genovese, Enrique Muñoz, Vincenzo
Piuri, Fabio Scotti, and Gianluca Sforza. 2016. Biometric recognition in
automated border control: a survey.ACMComputing Surveys (CSUR), 49,
2, 1–39.

[114] Oleksandr Lavrynenko, Alla Pinchuk, Hanna Martyniuk, Andrii Fes-
enko, Stanislav Yarotsky, and Marek Aleksander. 2023. Remote Voice
User Verification System for Access to IoT Services Based on 5G Tech-
nologies. In 2023 IEEE 12th International Conference on Intelligent Data
Acquisition and Advanced Computing Systems: Technology and Applica-
tions (IDAACS). Volume 1. IEEE, pp. 1042–1048.

[115] Zhihang Li, Xu Tang, Junyu Han, Jingtuo Liu, and Ran He. 2019. Pyra-
midBox++: High Performance Detector for Finding Tiny Face. (2019).
DOI: 10.1904/arXiv.1904.00386. arXiv: 1904.00386 [cs.CV].

[116] Sheng Lian, Zhiming Luo, Zhun Zhong, Xiang Lin, Songzhi Su, and
Shaozi Li. 2018. Attention guided U-Net for accurate iris segmentation.
Journal of Visual Communication and ImageRepresentation, 56, 296–304.

[117] TailinLiang, JohnGlossner, LeiWang,ShaoboShi, andXiaotongZhang.
2021. Pruning and quantization for deep neural network acceleration: A
survey. Neurocomputing, 461, 370–403.

[118] Chi-Wei Lien and Sudip Vhaduri. 2023. Challenges andOpportunities of
BiometricUserAuthentication in theAgeof IoT:ASurvey.ACMComput-
ing Surveys.

[119] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hari-
haran, and Serge Belongie. 2017. Feature Pyramid Networks for Object
Detection. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 936–944. DOI: 10.1109/CVPR.2017.106.

[120] Linzaer. 2019. 1MB lightweight face detection model. https://github.co
m/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB. (2019).

[121] Chuncheng Liu. 2019. Multiple social credit systems in China. Economic
Sociology: The European Electronic Newsletter, 21, 1, 22–32.

[122] Tiantian Liu, Feng Lin, Chao Wang, Chenhan Xu, Xiaoyu Zhang,
Zhengxiong Li, Wenyao Xu, Ming-Chun Huang, and Kui Ren. 2023.
WavoID: Robust and Secure Multi-modal User Identification via
mmWave-voice Mechanism. In Proceedings of the 36th Annual ACM
Symposium on User Interface Software and Technology, pp. 1–15.

https://doi.org/10.1007/s11042-020-10457-9
https://doi.org/10.1007/s11042-020-10457-9
https://doi.org/10.1904/arXiv.1904.00386
https://arxiv.org/abs/1904.00386
https://doi.org/10.1109/CVPR.2017.106
https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB
https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB

Bibliography 147

[123] Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le
Song. 2017. Sphereface: Deep hypersphere embedding for face recogni-
tion. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 212–220.

[124] Zhaoxiang Liu, Huan Hu, Jinqiang Bai, Shaohua Li, and Shiguo Lian.
2019. Feature aggregation network for video face recognition. In Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision
Workshops.

[125] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. 2015. Deep
learning face attributes in the wild. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pp. 3730–3738.

[126] Eduardo Garea Llano, Mireya Saraí García Vázquez, Juan M. Colores
Vargas, Luis M. Zamudio Fuentes, and Alejandro A. Ramírez Acosta.
2018. Optimized robust multi-sensor scheme for simultaneous video
and image iris recognition. Pattern Recognition Letters, 101, (January
2018), 44–51. ISSN: 0167-8655. DOI: 10.1016/j.patrec.2017.11.012.

[127] Giulio Lovisotto, Henry Turner, Simon Eberz, and Ivan Martinovic.
2020. Seeing red: PPG biometrics using smartphone cameras. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pp. 818–819.

[128] Mark Maguire. 2009. The birth of biometric security. Anthropology to-
day, 25, 2, 9–14.

[129] Manmeet Mahinderjit Singh, Ke Wan Ching, and Asrulnizam Abd
Manaf. 2020. A novel out-of-band biometrics authentication scheme
forwearable devices. International Journal of Computers andApplications,
42, 6, 589–601.

[130] Giosuè Cataldo Marinò, Alessandro Petrini, Dario Malchiodi, and
Marco Frasca. 2021. Compact representations of convolutional neu-
ral networks via weight pruning and quantization. arXiv preprint
arXiv:2108.12704.

[131] Magdin Martin, Koprda Štefan, and Ferenczy L’ubor. 2018. Biomet-
rics authenticationoffingerprintwithusingfingerprint reader andmi-
crocontroller Arduino.Telkomnika (Telecommunication Computing Elec-
tronics and Control), 16, 2, 755–765.

[132] René Mayrhofer, Michael Roland, and Tobias Höller. 2020. Poster: To-
wards an Architecture for Private Digital Authentication in the Physi-
cal World. In Network and Distributed System Security Symposium (NDSS
Symposium 2020), Posters. San Diego, CA, USA, (February 2020).

[133] René Mayrhofer, Michael Roland, and Tobias Höller. 2020. Poster: To-
wards an Architecture for Private Digital Authentication in the Physi-
cal World. In Network and Distributed System Security Symposium (NDSS
Symposium 2020), Posters. San Diego, CA, USA, (February 2020).

[134] Lukas Mecke, Ken Pfeuffer, Sarah Prange, and Florian Alt. 2018. Open
sesame! user perception of physical, biometric, and behavioural au-
thentication concepts to open doors. In Proceedings of the 17th interna-
tional conference on mobile and ubiquitous multimedia, pp. 153–159.

https://doi.org/10.1016/j.patrec.2017.11.012

Bibliography 148

[135] Joanna Phillips Melancon and Vassilis Dalakas. 2018. Consumer social
voice in the age of socialmedia: Segmentation profiles and relationship
marketing strategies. Business Horizons, 61, 1, 157–167.

[136] Qiang Meng, Shichao Zhao, Zhida Huang, and Feng Zhou. 2021. Mag-
face: A universal representation for face recognition and quality as-
sessment. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 14225–14234.

[137] Zuheng Ming, Muriel Visani, Muhammad Muzzamil Luqman, and
Jean-Christophe Burie. 2020. A survey on anti-spoofing methods
for facial recognition with rgb cameras of generic consumer devices.
Journal of imaging, 6, 12, 139.

[138] Ryogo Miyazaki, Kazuya Sasaki, Norimichi Tsumura, and Keita Hirai.
2022. Hand authentication from RGB-D video based on deep neural
network. Electronic Imaging, 34, 1–5.

[139] Daniel Morgan and William Krouse. 2005. Biometric identifiers and
border security: 9/11 Commission recommendations and related issues.
In Congressional Information Service, Library of Congress.

[140] mos.ru. 2023. The Face Pay system for fare paymentwas launched at all
metro stations. Accessed February 2, 2023. https://www.mos.ru/news
/item/97579073/. (2023).

[141] Valerio Mura, Giulia Orrù, Roberto Casula, Alessandra Sibiriu, Giulia
Loi, Pierluigi Tuveri, LucaGhiani, andGianLucaMarcialis. 2018. LivDet
2017 fingerprint liveness detection competition 2017. In 2018 interna-
tional conference on biometrics (ICB). IEEE, pp. 297–302.

[142] Kamal Nasrollahi and Thomas B Moeslund. 2008. Face quality assess-
ment system invideo sequences. InBiometrics and IdentityManagement:
First European Workshop, BIOID 2008, Roskilde, Denmark, May 7-9, 2008.
Revised Selected Papers 1. Springer, pp. 10–18.

[143] RyotaNatsume, Shunsuke Saito, ZengHuang,Weikai Chen, Chongyang
Ma, Hao Li, and Shigeo Morishima. 2019. Siclope: Silhouette-based
clothed people. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 4480–4490.

[144] Natalia Neverova, Christian Wolf, Graham W Taylor, and Florian
Nebout. 2015. Hand segmentationwith structured convolutional learn-
ing. In Computer Vision–ACCV 2014: 12th Asian Conference on Computer
Vision, Singapore, Singapore, November 1-5, 2014, Revised Selected Papers,
Part III 12. Springer, pp. 687–702.

[145] MeiLNgan,Patrick JGrother, andKayeeKHanaoka. 2020.Ongoing face
recognition vendor test (frvt) part 6b: Face recognition accuracy with
face masks using post-covid-19 algorithms.

[146] Koichiro Niinuma, Unsang Park, and Anil K Jain. 2010. Soft biometric
traits for continuous user authentication. IEEE Transactions on informa-
tion forensics and security, 5, 4, 771–780.

[147] Mark S Nixon, Paulo L Correia, Kamal Nasrollahi, Thomas BMoeslund,
AbdenourHadid, andMassimoTistarelli. 2015. On soft biometrics. Pat-
tern Recognition Letters, 68, 218–230.

https://www.mos.ru/news/item/97579073/
https://www.mos.ru/news/item/97579073/

Bibliography 149

[148] Rodrigo Frassetto Nogueira, Roberto de Alencar Lotufo, and Rubens
Campos Machado. 2016. Fingerprint liveness detection using convolu-
tionalneuralnetworks. IEEE transactions on information forensics and se-
curity, 11, 6, 1206–1213.

[149] Henry Friday Nweke, Ying Wah Teh, Ghulam Mujtaba, Uzoma Rita
Alo, andMohammed Ali Al-garadi. 2019. Multi-sensor fusion based on
multiple classifier systems for human activity identification. Human-
centric Computing and Information Sciences, 9, 1, 1–44.

[150] Uzoma IOduah, IfeanyichukwuFKevin,Daniel OOluwole, and Josephat
U Izunobi. 2021. Towards a high-precision contactless fingerprint
scanner for biometric authentication. Array, 11, 100083.

[151] Obi Ogbanufe and Dan J Kim. 2018. Comparing fingerprint-based bio-
metrics authentication versus traditional authentication methods for
e-payment. Decision Support Systems, 106, 1–14.

[152] Kennedy Okokpujie, Etinosa Noma-Osaghae, Olatunji Okesola, Os-
emwegie Omoruyi, Chinonso Okereke, Samuel John, and Imhade P
Okokpujie. 2019. Fingerprint biometric authentication based point of
sale terminal. In Information Science and Applications 2018: ICISA 2018.
Springer, pp. 229–237.

[153] Muhtahir O Oloyede and Gerhard PHancke. 2016. Unimodal andmulti-
modal biometric sensing systems: a review. IEEE access, 4, 7532–7555.

[154] VM Opanasenko, Sh Kh Fazilov, SS Radjabov, and Sh S Kakharov. 2024.
Multilevel Face Recognition System. Cybernetics and Systems Analysis,
60, 1, 146–151.

[155] Bengie L Ortiz, Jo Woon Chong, Vibhuti Gupta, Monay Shoushan,
Kwanghee Jung, and Tim Dallas. 2022. A Biometric Authentication
Technique Using Smartphone Fingertip Photoplethysmography Sig-
nals. IEEE Sensors Journal, 22, 14, 14237–14249.

[156] Federico Pala and Bir Bhanu. 2017. Iris liveness detection by relative
distance comparisons. InProceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, pp. 162–169.

[157] Shijia Pan, An Chen, and Pei Zhang. 2013. Securitas: user identification
through rgb-nir camera pair on mobile devices. In Proceedings of the
Third ACMworkshop on Security and privacy in smartphones &mobile de-
vices, pp. 99–104.

[158] Omkar Parkhi, Andrea Vedaldi, and Andrew Zisserman. 2015. Deep face
recognition. InBMVC2015-Proceedings of theBritishMachineVisionCon-
ference 2015. British Machine Vision Association.

[159] Omkar M. Parkhi, Andrea Vedaldi, and Andrew Zisserman. 2015. Deep
Face Recognition. In Proceedings of the BritishMachine Vision Conference
(BMVC) Article 41. BMVA Press, (September 2015), pp. 41.1–41.12. ISBN:
1-901725-53-7. DOI: 10.5244/C.29.41.

[160] ASU Pathan, Kamlesh Kumar Thakur, Abhijit Chakraborty, and Mo-
hammadHumayunKabir. 2019. Fingerprint authenticationsecurity:An
improved 2-step authentication method with flexibility. International
Journal of Scientific & Engineering Research, 10, 1.

https://doi.org/10.5244/C.29.41

Bibliography 150

[161] Annamalai Prakash and Rajeswari Mukesh. 2014. A biometric approach
for continuous user authentication by fusing hard and soft traits. Int. J.
Netw. Secur., 16, 1, 65–70.

[162] KB Pranav and J Manikandan. 2020. Design and evaluation of a real-
time face recognition system using convolutional neural networks.
Procedia Computer Science, 171, 1651–1659.

[163] Dulyawit Prangchumpol. 2019. Face Recognition for Attendance Man-
agement System Using Multiple Sensors. Journal of Physics: Conference
Series, 1335, 1, (October 2019), 012011. ISSN: 1742-6588,1742-6596.
DOI: 10.1088/1742-6596/1335/1/012011.

[164] Michael Preisach. 2022. System Integrity and Attestation for Biometric
Sensors. Master’s thesis. Johannes Kepler University Linz, Institute of
Networks and Security, Linz, Austria, (January 2022), 79 pages.

[165] Sen Qiu, Hongkai Zhao, Nan Jiang, Zhelong Wang, Long Liu, Yi An,
Hongyu Zhao, Xin Miao, Ruichen Liu, and Giancarlo Fortino. 2022.
Multi-sensor information fusion based on machine learning for real
applications in human activity recognition: State-of-the-art and re-
search challenges. Information Fusion, 80, 241–265.

[166] EnasARaheem, SharifahMumtazahSyedAhmad, andWanAzizunWan
Adnan. 2019. Insight on face liveness detection: A systematic literature
review. International Journal of Electrical & Computer Engineering (2088-
8708), 9, 6.

[167] Emmanuel Ramson, Nehemiah Musa, and John Chaka. 2023. ECG-
Based Biometric Schemes for Healthcare: A Systematic Review. 8, (July
2023), 3241–3263. DOI: 10.5281/zenodo.8282855.

[168] HumayanKabirRana,MdShafiulAzam,MstRashidaAkhtar, JulianMW
Quinn, and Mohammad Ali Moni. 2019. A fast iris recognition system
through optimum feature extraction. PeerJ Computer Science, 5, e184.

[169] Yongming Rao, Jiwen Lu, and Jie Zhou. 2017. Attention-aware deep re-
inforcement learning for video face recognition. In Proceedings of the
IEEE international conference on computer vision, pp. 3931–3940.

[170] A Revathi, C Jeyalakshmi, and Karuppusamy Thenmozhi. 2019. Person
authentication using speech as a biometric against play back attacks.
Multimedia Tools and Applications, 78, 2, 1569–1582.

[171] Jacinto Rivero-Hernández, Annette Morales-González, Lester Guerra
Denis, and Heydi Méndez-Vázquez. 2021. Ordered Weighted Aggrega-
tion Networks for Video Face Recognition. Pattern Recognition Letters,
146, 237–243.

[172] JosephRoth,XiaomingLiu,ArunRoss, andDimitrisMetaxas. 2013.Bio-
metric authentication via keystroke sound. In 2013 international confer-
ence on biometrics (ICB). IEEE, pp. 1–8.

[173] Zhang Rui and Zheng Yan. 2018. A survey on biometric authentica-
tion: Toward secure and privacy-preserving identification. IEEE access,
7, 5994–6009.

https://doi.org/10.1088/1742-6596/1335/1/012011
https://doi.org/10.5281/zenodo.8282855

Bibliography 151

[174] Riseul Ryu, Soonja Yeom, Soo-Hyung Kim, and David Herbert. 2021.
Continuous multimodal biometric authentication schemes: a system-
atic review. IEEE Access, 9, 34541–34557.

[175] Charles Saavedra, Pamela Smith, and Jessie Peissig. 2013. The relative
role of eyes, eyebrows, and eye region in face recognition. Journal of Vi-
sion, 13, 9, 410–410.

[176] Md Sahidullah, Dennis Alexander Lehmann Thomsen, Rosa Gonzalez
Hautamäki, Tomi Kinnunen, Zheng-Hua Tan, Robert Parts, andMartti
Pitkänen. 2017. Robust voice livenessdetectionand speaker verification
using throatmicrophones. IEEE/ACM Transactions on Audio, Speech, and
Language Processing, 26, 1, 44–56.

[177] Anush Sankaran, Aayush Jain, Tarun Vashisth, Mayank Vatsa, and
Richa Singh. 2017. Adaptive latent fingerprint segmentation using fea-
ture selection and random decision forest classification. Information
Fusion, 34, 1–15.

[178] ManishaSapkale andSMRajbhoj. 2016.Abiometric authentication sys-
tem based on finger vein recognition. In 2016 International Conference
on Inventive Computation Technologies (ICICT). Volume 3. IEEE, pp. 1–4.

[179] Neyire Deniz Sarier. 2021. Multimodal biometric authentication for
mobile edge computing. Information Sciences, 573, (September 2021),
82–99. ISSN: 0020-0255. DOI: 10.1016/j.ins.2021.05.036.

[180] Mohamed Sayed and Faris Baker. 2018. Thermal face authentication
with convolutional neural network. J. Comput. Sci, 14, 12, 1627–1637.

[181] Florian Schroff, Dmitry Kalenichenko, and James Philbin. 2015.
Facenet: A unified embedding for face recognition and clustering.
In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 815–823.

[182] Philipp Schwarz, Hofer, Philipp, and Josef Scharinger. 2022. Gait
Recognition Using 3D View-Transformation Model. In International
Conference on Computer Aided Systems Theory. Springer, pp. 452–459.

[183] PhilippSchwarz, Josef Scharinger, andHofer, Philipp. 2021.Gait recog-
nition with densePose energy images. In International Conference on
Systems, Signals and Image Processing. Springer, pp. 65–70.

[184] SandeepSinghSengar,UHariharan, andKRajkumar. 2020.Multimodal
biometric authentication system using deep learning method. In 2020
International Conference on Emerging Smart Computing and Informatics
(ESCI). IEEE, pp. 309–312.

[185] Sandeep Singh Sengar, U. Hariharan, and K. Rajkumar. 2020. Multi-
modal Biometric Authentication System using Deep Learning Method.
In IEEE, Pune, India, (March 2020), pp. 309–312. ISBN: 978-1-72815-
263-9. DOI: 10.1109/ESCI48226.2020.9167512.

[186] Soumyadip Sengupta, Jun-Cheng Chen, Carlos Castillo, Vishal M Pa-
tel, Rama Chellappa, and David W Jacobs. 2016. Frontal to profile face
verification in the wild. In 2016 IEEE winter conference on applications of
computer vision (WACV). IEEE, pp. 1–9.

https://doi.org/10.1016/j.ins.2021.05.036
https://doi.org/10.1109/ESCI48226.2020.9167512

Bibliography 152

[187] Alireza Sepas-Moghaddam and Ali Etemad. 2022. Deep gait recogni-
tion: A survey. IEEE transactions on pattern analysis and machine intelli-
gence, 45, 1, 264–284.

[188] Sefik Ilkin Serengil and Alper Ozpinar. 2020. Lightface: A hybrid deep
face recognition framework. In 2020 innovations in intelligent systems
and applications conference (ASYU). IEEE, pp. 1–5.

[189] Tuanjie Shao and Dongkun Shin. 2022. Structured Pruning for Deep
Convolutional Neural Networks via Adaptive Sparsity Regularization.
In 2022 IEEE 46th Annual Computers, Software, and Applications Confer-
ence (COMPSAC). IEEE, pp. 982–987.

[190] ClarkDShaver and JohnMAcken. 2016. A brief reviewof speaker recog-
nition technology.

[191] Maneet Singh, Richa Singh, and Arun Ross. 2019. A comprehensive
overview of biometric fusion. Information Fusion, 52, 187–205.

[192] Manminder Singh and AS Arora. 2018. A novel face liveness detection
algorithm with multiple liveness indicators.Wireless Personal Commu-
nications, 100, 1677–1687.

[193] Ivo Sluganovic, Marc Roeschlin, Kasper B Rasmussen, and Ivan Mar-
tinovic. 2018. Analysis of reflexive eye movements for fast replay-
resistant biometric authentication. ACMTransactions on Privacy and Se-
curity (TOPS), 22, 1, 1–30.

[194] Daniel F Smith, Arnold Wiliem, and Brian C Lovell. 2015. Face recogni-
tion on consumer devices: Reflections on replay attacks. IEEE Transac-
tions on Information Forensics and Security, 10, 4, 736–745.

[195] Jesús Solano, Christian Lopez, Esteban Rivera, Alejandra Castelblanco,
Lizzy Tengana, andMartin Ochoa. 2020. Scrap: synthetically composed
replay attacks vs. adversarialmachine learning attacks againstmouse-
basedbiometric authentication. InProceedings of the 13thACMWorkshop
on Artificial Intelligence and Security, pp. 37–47.

[196] Baolin Song, Hao Jiang, Li Zhao, and Chengwei Huang. 2017. A bimodal
biometric verification system based on deep learning. In Proceedings of
the International Conference on Video and Image Processing, pp. 89–93.

[197] Lingxue Song, Dihong Gong, Zhifeng Li, Changsong Liu, and Wei Liu.
2019. Occlusion robust face recognition based on mask learning with
pairwisedifferential siamesenetwork. InProceedings of the IEEE/CVF in-
ternational conference on computer vision, pp. 773–782.

[198] Manu Sporny, Dave Longley, andDavid Chadwick. 2019. Verifiable Cre-
dentials Data Model.W3C Recommendation. https://www.w3.org/TR/vc
-data-model/.

[199] David B Stewart. 2001.Measuring execution time and real-timeperfor-
mance. In Embedded Systems Conference (ESC). Volume 141. Citeseer.

https://www.w3.org/TR/vc-data-model/
https://www.w3.org/TR/vc-data-model/

Bibliography 153

[200] Ahmed Raad Al-Sudani, Shang Gao, Sheng Wen, and Muhmmad Al-
Khiza’ay. 2018. Checking an authentication of person depends on RFID
with thermal image. In Security, Privacy, and Anonymity in Computation,
Communication, and Storage: 11th International Conference and Satel-
lite Workshops, SpaCCS 2018, Melbourne, NSW, Australia, December 11-13,
2018, Proceedings 11. Springer, pp. 371–380.

[201] Bharath Sudharsan, Peter Corcoran, and Muhammad Intizar Ali. 2022.
Smart speaker design and implementation with biometric authen-
tication and advanced voice interaction capability. arXiv preprint
arXiv:2207.10811.

[202] Ziwen Sun, Yao Wang, Gang Qu, and Zhiping Zhou. 2016. A 3-D hand
gesture signature based biometric authentication system for smart-
phones. Security and Communication Networks, 9, 11, 1359–1373.

[203] Aditya Sundararajan, Arif I Sarwat, and Alexander Pons. 2019. A survey
on modality characteristics, performance evaluation metrics, and se-
curity for traditional and wearable biometric systems. ACM Computing
Surveys (CSUR), 52, 2, 1–36.

[204] Dhiraj Sunehra. 2014. Fingerprint based biometric ATM authentication
system. International journal of engineering inventions, 3, 11, 22–28.

[205] Rahmad Syalevi, Aji Prasetyo, and Rizal Fathoni Aji. 2024. Study on the
Implementation of Multimodal Continuous Authentication in Smart-
phones: A Systematic Review. International Journal of Advanced Com-
puter Science & Applications, 15, 2.

[206] Rafat Jamal Tazim, Md Messal Monem Miah, Sanzida Sayedul Surma,
Mohammad Tariqul Islam, Celia Shahnaz, and Shaikh Anowarul Fat-
tah. 2018. Biometric authentication using CNN features of dorsal vein
pattern extracted from NIR image. In TENCON 2018-2018 IEEE Region
10 Conference. IEEE, pp. 1923–1927.

[207] Fatemeh Tehranipoor, Nima Karimian, Paul A Wortman, and John A
Chandy. 2018. Low-cost authentication paradigm for consumer elec-
tronics within the internet of wearable fitness tracking applications. In
2018 IEEE international conference on consumer electronics (ICCE). IEEE,
pp. 1–6.

[208] Shejin Thavalengal and Peter Corcoran. 2016. User authentication on
smartphones: Focusing on iris biometrics. IEEE Consumer Electronics
Magazine, 5, 2, 87–93.

[209] The Tor Project. 2023. Onion Services. Accessed: August 14, 2024.
(2023). Retrieved 08/14/2024 from https://community.torproject .or
g/onion-services/.

[210] AS Tolba, AH El-Baz, and AA El-Harby. 2006. Face recognition: A liter-
ature review. International Journal of Signal Processing, 2, 2, 88–103.

[211] Tsung-Han Tsai and Shih-An Huang. 2022. Refined U-net: A new se-
mantic technique on hand segmentation. Neurocomputing, 495, 1–10.

[212] uidai.gov.in. 2023. Unique Identification Authority of India. Accessed
February 2, 2023. https://uidai.gov.in/en/. (2023).

https://community.torproject.org/onion-services/
https://community.torproject.org/onion-services/
https://uidai.gov.in/en/

Bibliography 154

[213] Buhari Ugbede Umar, Olayemi Mikail Olaniyi, Abisoye Blessing
Olatunde, Ademoh Agbogunde Isah, Arifa Khatoon Haq, and Isaac
Taiye Ajayi. 2022. A bi-factor biometric authentication system for
secure electronic voting system. In 2022 IEEE Nigeria 4th Interna-
tional Conference on Disruptive Technologies for Sustainable Development
(NIGERCON). IEEE, pp. 1–5.

[214] Anthony Ngozichukwuka Uwaechia and Dzati Athiar Ramli. 2021. A
comprehensive survey on ECG signals as new biometric modality for
human authentication: Recent advances and future challenges. IEEE
Access, 9, 97760–97802.

[215] Gooljar Veerajay, S Ramiah, and H Vasudavan. 2019. Biometric Bus
Ticketing System In Mauritius. International Journal of Scientific and
Technology Research, 8, 12, 568–571.

[216] Sudip Vhaduri and Christian Poellabauer. 2019. Multi-modal
biometric-based implicit authentication of wearable device users.
IEEE Transactions on Information Forensics and Security, 14, 12, 3116–
3125.

[217] P. Viola andM. Jones. 2001. Rapid object detection using a boosted cas-
cade of simple features. In Proceedings of the 2001 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition. CVPR 2001. Vol-
ume 1, pp. I–I. DOI: 10.1109/CVPR.2001.990517.

[218] Changsheng Wan, Li Wang, and Vir V Phoha. 2018. A survey on gait
recognition. ACM Computing Surveys (CSUR), 51, 5, 1–35.

[219] Guo ChunWan,MengMeng Li, He Xu,WenHao Kang, JinWen Rui, and
Mei Song Tong. 2020. XFinger-net: pixel-wise segmentation method
for partially defective fingerprint based on attention gates and U-net.
Sensors, 20, 16, 4473.

[220] Caiyong Wang, Jawad Muhammad, Yunlong Wang, Zhaofeng He, and
Zhenan Sun. 2020. Towards complete and accurate iris segmenta-
tion using deep multi-task attention network for non-cooperative iris
recognition. IEEE Transactions on information forensics and security, 15,
2944–2959.

[221] Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong, Jingchao
Zhou, Zhifeng Li, and Wei Liu. 2018. Cosface: Large margin cosine loss
for deep face recognition. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp. 5265–5274.

[222] Qi Wang, Xiangyue Meng, Ting Sun, and Xiangde Zhang. 2022. A light
iris segmentation network. The Visual Computer, 38, 7, 2591–2601.

[223] Yao Wang, Wandong Cai, Tao Gu, Wei Shao, Yannan Li, and Yong Yu.
2019. Secure your voice: An oral airflow-based continuous liveness de-
tection for voice assistants.Proceedings of the ACMon interactive,mobile,
wearable and ubiquitous technologies, 3, 4, 1–28.

[224] Zhongyuan Wang, Baojin Huang, Guangcheng Wang, Peng Yi, and
Kui Jiang. 2023. Masked face recognition dataset and application. IEEE
Transactions on Biometrics, Behavior, and Identity Science.

https://doi.org/10.1109/CVPR.2001.990517

Bibliography 155

[225] SethapongWong-In and Paniti Netinant. 2017. Revised softwaremodel
design for biometric examiner personal verification system. In Pro-
ceedings of the 2017 International Conference on Information Technology,
pp. 237–242.

[226] Libing Wu, Jingxiao Yang, Man Zhou, Yanjiao Chen, and Qian Wang.
2019. LVID: Amultimodal biometrics authentication system on smart-
phones. IEEE Transactions on Information Forensics and Security, 15,
1572–1585.

[227] Wei Wu, Yuan Zhang, Yunpeng Li, and Chuanyang Li. 2024. Fusion
recognition of palmprint and palm vein based on modal correlation.
Mathematical Biosciences and Engineering, 21, 2, 3129–3145.

[228] Zhi Wu, Dongheng Zhang, Chunyang Xie, Cong Yu, Jinbo Chen, Yang
Hu, and Yan Chen. 2022. RFMask: A simple baseline for human silhou-
ette segmentation with radio signals. IEEE Transactions on Multimedia.

[229] David Yambay, Benedict Becker, Naman Kohli, Daksha Yadav, Adam
Czajka, Kevin W Bowyer, Stephanie Schuckers, Richa Singh, Mayank
Vatsa, Afzel Noore, et al. 2017. LivDet iris 2017—Iris liveness detection
competition 2017. In 2017 IEEE International Joint Conference on Biomet-
rics (IJCB). IEEE, pp. 733–741.

[230] Jiaolong Yang, Peiran Ren, Dongqing Zhang, Dong Chen, Fang Wen,
Hongdong Li, and Gang Hua. 2017. Neural aggregation network for
video face recognition. InProceedings of the IEEEConference onComputer
Vision and Pattern Recognition, pp. 4362–4371.

[231] Qing Yang, Jiachen Mao, Zuoguan Wang, and Li Hai. 2021. Dynamic
Regularization on Activation Sparsity for Neural Network Efficiency
Improvement. ACM Journal on Emerging Technologies in Computing Sys-
tems (JETC), 17, 4, 1–16.

[232] ShuoYang,PingLuo,Chen-ChangeLoy, andXiaoouTang. 2016.WIDER
FACE:AFaceDetectionBenchmark. InProceedingsof the IEEEConference
on Computer Vision and Pattern Recognition, pp. 5525–5533. DOI: 10.110
9/CVPR.2016.596.

[233] Shuo Yang, Ping Luo, Chen-Change Loy, and Xiaoou Tang. 2016. Wider
face: A face detection benchmark. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 5525–5533.

[234] Masaki Yasuhara, Isao Nambu, and Shohei Yano. 2022. Bilateral ear
acoustic authentication: A biometric authentication system using both
ears and a special earphone. Applied Sciences, 12, 6, 3167.

[235] Chengsheng Yuan, Xinting Li, QM Jonathan Wu, Jin Li, and Xingming
Sun. 2017. Fingerprint liveness detection from different fingerprint
materialsusingconvolutionalneuralnetworkandprincipal component
analysis. Computers, Materials & Continua, 53, 3, 357–371.

[236] Chengsheng Yuan, Xingming Sun, and Rui Lv. 2016. Fingerprint live-
ness detection based on multi-scale LPQ and PCA. China Communica-
tions, 13, 7, 60–65.

https://doi.org/10.1109/CVPR.2016.596
https://doi.org/10.1109/CVPR.2016.596

Bibliography 156

[237] Nuhu Yusuf, Kamalu Abdullahi Marafa, Kamila Ladan Shehu, Hussaini
Mamman, and Mustapha Maidawa. 2020. A survey of biometric ap-
proaches of authentication. International Journal of Advanced Computer
Research, 10, 47, 96–104.

[238] Stefanos Zafeiriou, Cha Zhang, and Zhengyou Zhang. 2015. A survey on
face detection in the wild: past, present and future. Computer Vision and
Image Understanding, 138, 1–24.

[239] MehrzadZargarzadehandKeivanMaghooli. 2013.Abehavioral biomet-
ric authentication system based on memory game. Biosci. Biotechnol.
Res. Asia, 10, 2, 781–787.

[240] Ye Zhan, Aditya Singh Rathore, Giovanni Milione, Yuehang Wang,
WenhanZheng,WenyaoXu, and JunXia. 2020. 3Dfinger vein biometric
authentication with photoacoustic tomography. Applied Optics, 59, 28,
8751–8758.

[241] Kaipeng Zhang, Zhanpeng Zhang, Zhifeng Li, and Yu Qiao. 2016. Joint
face detection and alignment using multitask cascaded convolutional
networks. IEEE Signal Processing Letters, 23, 10, 1499–1503.

[242] Linghan Zhang, Sheng Tan, Zi Wang, Yili Ren, Zhi Wang, and Jie Yang.
2020. Viblive: A continuous liveness detection for secure voice user in-
terface in iot environment. In Proceedings of the 36th Annual Computer
Security Applications Conference, pp. 884–896.

[243] LinghanZhang, ShengTan, and JieYang. 2017.Hearingyour voice isnot
enough: An articulatory gesture based liveness detection for voice au-
thentication. In Proceedings of the 2017 ACM SIGSAC Conference on Com-
puter and Communications Security, pp. 57–71.

[244] Linghan Zhang, Sheng Tan, Jie Yang, and Yingying Chen. 2016. Voice-
live: A phoneme localization based liveness detection for voice authen-
tication on smartphones. In Proceedings of the 2016 ACM SIGSAC Confer-
ence on Computer and Communications Security, pp. 1080–1091.

[245] Shifeng Zhang, Xiangyu Zhu, Zhen Lei, Hailin Shi, Xiaobo Wang, and
Stan Z Li. 2017. Faceboxes: A CPU real-time face detector with high ac-
curacy. In 2017 IEEE International Joint Conference on Biometrics (IJCB).
IEEE, pp. 1–9.

[246] Xiang Zhang, Lina Yao, ChaoranHuang, Tao Gu, Zheng Yang, and Yun-
hao Liu. 2020. DeepKey: amultimodal biometric authentication system
via deep decoding gaits and brainwaves. ACM Transactions on Intelligent
Systems and Technology (TIST), 11, 4, 1–24.

[247] Xinman Zhang, Dongxu Cheng, Pukun Jia, Yixuan Dai, and Xuebin Xu.
2020. An efficient android-basedmultimodal biometric authentication
systemwith face and voice. IEEE Access, 8, 102757–102772.

[248] Zhishuai Zhang, Wei Shen, Siyuan Qiao, YanWang, Bo Wang, and Alan
Yuille. 2020. Robust face detection via learning small faces on hard im-
ages. In Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, pp. 1361–1370.

Bibliography 157

[249] Shiyu Zhao, Wankou Yang, and Yangang Wang. 2018. A new hand seg-
mentation method based on fully convolutional network. In 2018 Chi-
nese Control And Decision Conference (CCDC). IEEE, pp. 5966–5970.

[250] Zhong-Qiu Zhao, Peng Zheng, Shou-tao Xu, and Xindong Wu. 2019.
Object detectionwith deep learning: A review. IEEE transactions on neu-
ral networks and learning systems, 30, 11, 3212–3232.

[251] JingxiaoZheng,RajeevRanjan,Ching-HuiChen, Jun-ChengChen,Car-
los D Castillo, and Rama Chellappa. 2020. An automatic system for un-
constrained video-based face recognition. IEEETransactions onBiomet-
rics, Behavior, and Identity Science, 2, 3, 194–209.

[252] TianyueZhengandWeihongDeng. 2018. Cross-pose lfw: Adatabase for
studying cross-pose face recognition in unconstrained environments.
Beijing University of Posts and Telecommunications, Tech. Rep, 5, 7.

[253] Dexing Zhong, Xuefeng Du, and Kuncai Zhong. 2019. Decade progress
of palmprint recognition: A brief survey. Neurocomputing, 328, 16–28.

Appendix A

Code

To avoid adding unnecessary pages to this thesis, I have included the complete
source codeused in this thesis as afileattachment, integrated into thePDFdoc-
ument itself. This integration was achieved using the attachfile2 LaTeX pack-
age1, which allows for the embedding of arbitrary files directly within the PDF
structure, which is possible since PDF 1.3. The attached ZIP file containing the
source code can be accessed either by clicking the embedded link within this
document, if supported by your PDF viewer (), or by using PDFmanipula-
tion tools such as the pdfdetach command.

This approach offers useful benefits for the long-termpreservation and acces-
sibility of research materials. By embedding the relevant code within the PDF,
the implementation details stay closely linked to the thesis text, which makes
it easier for others to reference and reproduce the results in the future. Addi-
tionally, this self-contained format helps reduce the risk of the code becoming
separated from its documentation.

1https://ctan.org/pkg/attachfile2

158

face-lib/benches/benches.rs

face-lib/flake.nix

{
 inputs = {
 mozpkgs = {
 url = "github:mozilla/nixpkgs-mozilla";
 flake = false;
 };
 naersk = {
 url = "github:nmattia/naersk";
 };
 nixpkgs = {
 url = "github:nixOS/nixpkgs/6b1b72c0f887a478a5aac355674ff6df0fc44f44";
 };
 nixpkgs-flatbuffers = {
 url = "github:nixOS/nixpkgs/d1c3fea7ecbed758168787fe4e4a3157e52bc808";
 };
 utils = {
 url = "github:numtide/flake-utils";
 };
 };

 outputs = { self, naersk, mozpkgs, nixpkgs, nixpkgs-flatbuffers, utils }:
 utils.lib.eachDefaultSystem (system:
 let
 pkgs = import nixpkgs { inherit system; };
 flatbuffers = (import nixpkgs-flatbuffers { inherit system; }).flatbuffers;
 fixed-tensorflow-lite = (pkgs.tensorflow-lite
 .override { inherit flatbuffers; })
 .overrideAttrs (self: super: { meta.knownVulnerabilities = []; }
);
 stdenv = pkgs.clangStdenv;

 mozilla = pkgs.callPackage (mozpkgs + "/package-set.nix") {};
 rust = (mozilla.rustChannelOf {
 date = "2024-02-08";
 channel = "stable";
 sha256 = "sha256-e4mlaJehWBymYxJGgnbuCObVlqMlQSilZ8FljG9zPHY=";
 }).rust;
 naersk-lib = pkgs.callPackage naersk {
 cargo = rust;
 rustc = rust;
 };
 pname = "face-lib";
 in {
 defaultPackage = naersk-lib.buildPackage {
 name = pname;
 version = "0.1.0";
 root = ./.;
 src = ./.;
 doCheck = true; # run the tests (nix logs to view output logs)
 LIBCLANG_PATH="${pkgs.libclang.lib}/lib";
 TFLITE_X86_64_LIB_DIR="${fixed-tensorflow-lite}/lib";
 TFLITE_LIB_DIR="${fixed-tensorflow-lite}/lib";
 RUST_BACKTRACE=1;
 gitSubmodules = true;
 #singleStep = true;
 preConfigure = ''
 # Set C flags for Rust's bindgen program. Unlike ordinary C
 # compilation, bindgen does not invoke $CC directly. Instead it
 # uses LLVM's libclang. To make sure all necessary flags are
 # included we need to look in a few places.
 # TODO: generalize this process for other use-cases.
 export BINDGEN_EXTRA_CLANG_ARGS="$(< ${stdenv.cc}/nix-support/libc-crt1-cflags) \
 $(< ${stdenv.cc}/nix-support/libc-cflags) \
 $(< ${stdenv.cc}/nix-support/cc-cflags) \
 $(< ${stdenv.cc}/nix-support/libcxx-cxxflags) \
 ${pkgs.lib.optionalString stdenv.cc.isClang "-idirafter ${stdenv.cc.cc}/lib/clang/${pkgs.lib.getVersion stdenv.cc.cc}/include"} \
 ${pkgs.lib.optionalString stdenv.cc.isGNU "-isystem ${stdenv.cc.cc}/include/c++/${pkgs.lib.getVersion stdenv.cc.cc} -isystem ${stdenv.cc.cc}/include/c++/${pkgs.lib.getVersion stdenv.cc.cc}/${stdenv.hostPlatform.config} -idirafter ${stdenv.cc.cc}/lib/gcc/${stdenv.hostPlatform.config}/${pkgs.lib.getVersion stdenv.cc.cc}/include"}
 "
 '';
 buildInputs = with pkgs; [
 vtk
 opencv
 fixed-tensorflow-lite
	 pkgs.bashInteractive
];
 nativeBuildInputs = with pkgs; [
 #breakpointHook
 stdenv.cc
 libclang
 pkgconfig
];
 };
 });
}

face-lib/tests/example.rs

face-lib/.gitignore

/target
result

face-lib/src/lib.rs

face-lib/src/warp.rs

face-lib/src/recognition/arcface.rs

face-lib/src/recognition/mod.rs

face-lib/src/detection/retinaface.rs

face-lib/src/detection/fast.rs

face-lib/src/detection/mod.rs

face-lib/src/detection/realface.rs

face-lib/src/visualization.rs

face-lib/.gitlab-ci.yml

default:
 tags:
 - nix-container-shell

stages:
 - build
 - verify

nix-build:
 stage: build
 script:
 - nix build --print-build-logs

nix-verify:
 stage: verify
 needs: [nix-build]
 script:
 - nix build --print-build-logs --rebuild --keep-failed

face-lib/LICENSE

 EUROPEAN UNION PUBLIC LICENCE v. 1.2
 EUPL © the European Union 2007, 2016

This European Union Public Licence (the ‘EUPL’) applies to the Work (as defined
below) which is provided under the terms of this Licence. Any use of the Work,
other than as authorised under this Licence is prohibited (to the extent such
use is covered by a right of the copyright holder of the Work).

The Work is provided under the terms of this Licence when the Licensor (as
defined below) has placed the following notice immediately following the
copyright notice for the Work:

 Licensed under the EUPL

or has expressed by any other means his willingness to license under the EUPL.

1. Definitions

In this Licence, the following terms have the following meaning:

- ‘The Licence’: this Licence.

- ‘The Original Work’: the work or software distributed or communicated by the
 Licensor under this Licence, available as Source Code and also as Executable
 Code as the case may be.

- ‘Derivative Works’: the works or software that could be created by the
 Licensee, based upon the Original Work or modifications thereof. This Licence
 does not define the extent of modification or dependence on the Original Work
 required in order to classify a work as a Derivative Work; this extent is
 determined by copyright law applicable in the country mentioned in Article 15.

- ‘The Work’: the Original Work or its Derivative Works.

- ‘The Source Code’: the human-readable form of the Work which is the most
 convenient for people to study and modify.

- ‘The Executable Code’: any code which has generally been compiled and which is
 meant to be interpreted by a computer as a program.

- ‘The Licensor’: the natural or legal person that distributes or communicates
 the Work under the Licence.

- ‘Contributor(s)’: any natural or legal person who modifies the Work under the
 Licence, or otherwise contributes to the creation of a Derivative Work.

- ‘The Licensee’ or ‘You’: any natural or legal person who makes any usage of
 the Work under the terms of the Licence.

- ‘Distribution’ or ‘Communication’: any act of selling, giving, lending,
 renting, distributing, communicating, transmitting, or otherwise making
 available, online or offline, copies of the Work or providing access to its
 essential functionalities at the disposal of any other natural or legal
 person.

2. Scope of the rights granted by the Licence

The Licensor hereby grants You a worldwide, royalty-free, non-exclusive,
sublicensable licence to do the following, for the duration of copyright vested
in the Original Work:

- use the Work in any circumstance and for all usage,
- reproduce the Work,
- modify the Work, and make Derivative Works based upon the Work,
- communicate to the public, including the right to make available or display
 the Work or copies thereof to the public and perform publicly, as the case may
 be, the Work,
- distribute the Work or copies thereof,
- lend and rent the Work or copies thereof,
- sublicense rights in the Work or copies thereof.

Those rights can be exercised on any media, supports and formats, whether now
known or later invented, as far as the applicable law permits so.

In the countries where moral rights apply, the Licensor waives his right to
exercise his moral right to the extent allowed by law in order to make effective
the licence of the economic rights here above listed.

The Licensor grants to the Licensee royalty-free, non-exclusive usage rights to
any patents held by the Licensor, to the extent necessary to make use of the
rights granted on the Work under this Licence.

3. Communication of the Source Code

The Licensor may provide the Work either in its Source Code form, or as
Executable Code. If the Work is provided as Executable Code, the Licensor
provides in addition a machine-readable copy of the Source Code of the Work
along with each copy of the Work that the Licensor distributes or indicates, in
a notice following the copyright notice attached to the Work, a repository where
the Source Code is easily and freely accessible for as long as the Licensor
continues to distribute or communicate the Work.

4. Limitations on copyright

Nothing in this Licence is intended to deprive the Licensee of the benefits from
any exception or limitation to the exclusive rights of the rights owners in the
Work, of the exhaustion of those rights or of other applicable limitations
thereto.

5. Obligations of the Licensee

The grant of the rights mentioned above is subject to some restrictions and
obligations imposed on the Licensee. Those obligations are the following:

Attribution right: The Licensee shall keep intact all copyright, patent or
trademarks notices and all notices that refer to the Licence and to the
disclaimer of warranties. The Licensee must include a copy of such notices and a
copy of the Licence with every copy of the Work he/she distributes or
communicates. The Licensee must cause any Derivative Work to carry prominent
notices stating that the Work has been modified and the date of modification.

Copyleft clause: If the Licensee distributes or communicates copies of the
Original Works or Derivative Works, this Distribution or Communication will be
done under the terms of this Licence or of a later version of this Licence
unless the Original Work is expressly distributed only under this version of the
Licence — for example by communicating ‘EUPL v. 1.2 only’. The Licensee
(becoming Licensor) cannot offer or impose any additional terms or conditions on
the Work or Derivative Work that alter or restrict the terms of the Licence.

Compatibility clause: If the Licensee Distributes or Communicates Derivative
Works or copies thereof based upon both the Work and another work licensed under
a Compatible Licence, this Distribution or Communication can be done under the
terms of this Compatible Licence. For the sake of this clause, ‘Compatible
Licence’ refers to the licences listed in the appendix attached to this Licence.
Should the Licensee's obligations under the Compatible Licence conflict with
his/her obligations under this Licence, the obligations of the Compatible
Licence shall prevail.

Provision of Source Code: When distributing or communicating copies of the Work,
the Licensee will provide a machine-readable copy of the Source Code or indicate
a repository where this Source will be easily and freely available for as long
as the Licensee continues to distribute or communicate the Work.

Legal Protection: This Licence does not grant permission to use the trade names,
trademarks, service marks, or names of the Licensor, except as required for
reasonable and customary use in describing the origin of the Work and
reproducing the content of the copyright notice.

6. Chain of Authorship

The original Licensor warrants that the copyright in the Original Work granted
hereunder is owned by him/her or licensed to him/her and that he/she has the
power and authority to grant the Licence.

Each Contributor warrants that the copyright in the modifications he/she brings
to the Work are owned by him/her or licensed to him/her and that he/she has the
power and authority to grant the Licence.

Each time You accept the Licence, the original Licensor and subsequent
Contributors grant You a licence to their contributions to the Work, under the
terms of this Licence.

7. Disclaimer of Warranty

The Work is a work in progress, which is continuously improved by numerous
Contributors. It is not a finished work and may therefore contain defects or
‘bugs’ inherent to this type of development.

For the above reason, the Work is provided under the Licence on an ‘as is’ basis
and without warranties of any kind concerning the Work, including without
limitation merchantability, fitness for a particular purpose, absence of defects
or errors, accuracy, non-infringement of intellectual property rights other than
copyright as stated in Article 6 of this Licence.

This disclaimer of warranty is an essential part of the Licence and a condition
for the grant of any rights to the Work.

8. Disclaimer of Liability

Except in the cases of wilful misconduct or damages directly caused to natural
persons, the Licensor will in no event be liable for any direct or indirect,
material or moral, damages of any kind, arising out of the Licence or of the use
of the Work, including without limitation, damages for loss of goodwill, work
stoppage, computer failure or malfunction, loss of data or any commercial
damage, even if the Licensor has been advised of the possibility of such damage.
However, the Licensor will be liable under statutory product liability laws as
far such laws apply to the Work.

9. Additional agreements

While distributing the Work, You may choose to conclude an additional agreement,
defining obligations or services consistent with this Licence. However, if
accepting obligations, You may act only on your own behalf and on your sole
responsibility, not on behalf of the original Licensor or any other Contributor,
and only if You agree to indemnify, defend, and hold each Contributor harmless
for any liability incurred by, or claims asserted against such Contributor by
the fact You have accepted any warranty or additional liability.

10. Acceptance of the Licence

The provisions of this Licence can be accepted by clicking on an icon ‘I agree’
placed under the bottom of a window displaying the text of this Licence or by
affirming consent in any other similar way, in accordance with the rules of
applicable law. Clicking on that icon indicates your clear and irrevocable
acceptance of this Licence and all of its terms and conditions.

Similarly, you irrevocably accept this Licence and all of its terms and
conditions by exercising any rights granted to You by Article 2 of this Licence,
such as the use of the Work, the creation by You of a Derivative Work or the
Distribution or Communication by You of the Work or copies thereof.

11. Information to the public

In case of any Distribution or Communication of the Work by means of electronic
communication by You (for example, by offering to download the Work from a
remote location) the distribution channel or media (for example, a website) must
at least provide to the public the information requested by the applicable law
regarding the Licensor, the Licence and the way it may be accessible, concluded,
stored and reproduced by the Licensee.

12. Termination of the Licence

The Licence and the rights granted hereunder will terminate automatically upon
any breach by the Licensee of the terms of the Licence.

Such a termination will not terminate the licences of any person who has
received the Work from the Licensee under the Licence, provided such persons
remain in full compliance with the Licence.

13. Miscellaneous

Without prejudice of Article 9 above, the Licence represents the complete
agreement between the Parties as to the Work.

If any provision of the Licence is invalid or unenforceable under applicable
law, this will not affect the validity or enforceability of the Licence as a
whole. Such provision will be construed or reformed so as necessary to make it
valid and enforceable.

The European Commission may publish other linguistic versions or new versions of
this Licence or updated versions of the Appendix, so far this is required and
reasonable, without reducing the scope of the rights granted by the Licence. New
versions of the Licence will be published with a unique version number.

All linguistic versions of this Licence, approved by the European Commission,
have identical value. Parties can take advantage of the linguistic version of
their choice.

14. Jurisdiction

Without prejudice to specific agreement between parties,

- any litigation resulting from the interpretation of this License, arising
 between the European Union institutions, bodies, offices or agencies, as a
 Licensor, and any Licensee, will be subject to the jurisdiction of the Court
 of Justice of the European Union, as laid down in article 272 of the Treaty on
 the Functioning of the European Union,

- any litigation arising between other parties and resulting from the
 interpretation of this License, will be subject to the exclusive jurisdiction
 of the competent court where the Licensor resides or conducts its primary
 business.

15. Applicable Law

Without prejudice to specific agreement between parties,

- this Licence shall be governed by the law of the European Union Member State
 where the Licensor has his seat, resides or has his registered office,

- this licence shall be governed by Belgian law if the Licensor has no seat,
 residence or registered office inside a European Union Member State.

Appendix

‘Compatible Licences’ according to Article 5 EUPL are:

- GNU General Public License (GPL) v. 2, v. 3
- GNU Affero General Public License (AGPL) v. 3
- Open Software License (OSL) v. 2.1, v. 3.0
- Eclipse Public License (EPL) v. 1.0
- CeCILL v. 2.0, v. 2.1
- Mozilla Public Licence (MPL) v. 2
- GNU Lesser General Public Licence (LGPL) v. 2.1, v. 3
- Creative Commons Attribution-ShareAlike v. 3.0 Unported (CC BY-SA 3.0) for
 works other than software
- European Union Public Licence (EUPL) v. 1.1, v. 1.2
- Québec Free and Open-Source Licence — Reciprocity (LiLiQ-R) or Strong
 Reciprocity (LiLiQ-R+).

The European Commission may update this Appendix to later versions of the above
licences without producing a new version of the EUPL, as long as they provide
the rights granted in Article 2 of this Licence and protect the covered Source
Code from exclusive appropriation.

All other changes or additions to this Appendix require the production of a new
EUPL version.

face-lib/README.md

face-lib

`face-lib` is a comprehensive Rust library designed for face detection and recognition tasks. It leverages state-of-the-art models to provide functionalities for detecting faces in images and extracting embeddings from each detected face.

Features

- **Face detection:** Identify faces within images with support for multiple detection models.
- **Face recognition:** Extract unique embeddings for each detected face for identification or verification.
- **Visualization support:** Visualize detection results (requires enabling the `vis` feature).

Supported Models

Face Detection

- [RetinaFace](https://openaccess.thecvf.com/content_CVPR_2020/papers/Deng_RetinaFace_Single-Shot_Multi-Level_Face_Localisation_in_the_Wild_CVPR_2020_paper.pdf)
- [FastDetection](https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB)

Face Recognition

- [ArcFace](https://openaccess.thecvf.com/content_CVPR_2019/papers/Deng_ArcFace_Additive_Angular_Margin_Loss_for_Deep_Face_Recognition_CVPR_2019_paper.pdf)

Getting Started

Prerequisites

Ensure you have Rust installed on your system. `face-lib` includes a Nix flake that pulls all required dependencies and produces a binary. You can build the project and execute tests with the following command: `nix build`

Installation

Add `face-lib` to your Cargo.toml:

```toml
[dependencies]
face-lib = "0.1.0"
```

Usage

Face detection

```rust
use face_lib::Detection;
use face_lib::detection::{RealFace, FaceProposal, FaceLandmarkProposal, FacialArea, Landmarks, Point};

let mut f = RealFace::new(0.7, "./static/detection/fastdet_640.onnx", "./static/detection/retinaface-150x150.tflite", "./static/detection/retinaface_anchors-150x150.json").unwrap();
let img = face_lib::img_read!("static/test-images/person.png");

let result = f.inference(&img).unwrap();
// Process the result...
```

Face recognition

```rust
use face_lib::{Pipeline, img_read};
use face_lib::detection::retinaface::Retinaface;
use face_lib::recognition::arcface::ArcFace;

let mut pipeline = Pipeline::new(
    Box::new(Retinaface::new("./static/detection/retinaface-150x150.tflite", "./static/detection/retinaface_anchors-150x150.json").unwrap()),
    Box::new(ArcFace::new("./static/recognition/arcface.tflite"))
);
let img = img_read!("static/test-images/person.png");
let result = pipeline.calc_embs(&img);
// Process the embeddings...
```

Visualization

To visualize detection results, enable the `vis` feature in your `Cargo.toml` and follow the example provided in the library documentation.

License

Licensed under the EUPL, Version 1.2 or – as soon they will be approved by the European Commission - subsequent versions of the EUPL (the "Licence"). You may not use this work except in compliance with the Licence.

License: [European Union Public License v1.2](https://joinup.ec.europa.eu/software/page/eupl)

Acknowledgement

This work has been carried out within the scope of Digidow, the Christian Doppler Laboratory for Private Digital Authentication in the Physical World. We gratefully acknowledge financial support by the Austrian Federal Ministry of Labour and Economy, the National Foundation for Research, Technology and Development, the Christian Doppler Research Association, 3 Banken IT GmbH, ekey biometric systems GmbH, Kepler Universitätsklinikum GmbH, NXP Semiconductors Austria GmbH & Co KG, and Österreichische Staatsdruckerei GmbH.

face-lib/Cargo.lock

This file is automatically @generated by Cargo.
It is not intended for manual editing.
version = 3

[[package]]
name = "ab_glyph_rasterizer"
version = "0.1.8"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c71b1793ee61086797f5c80b6efa2b8ffa6d5dd703f118545808a7f2e27f7046"

[[package]]
name = "adler"
version = "1.0.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f26201604c87b1e01bd3d98f8d5d9a8fcbb815e8cedb41ffccbeb4bf593a35fe"

[[package]]
name = "aho-corasick"
version = "1.1.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b2969dcb958b36655471fc61f7e416fa76033bdd4bfed0678d8fee1e2d07a1f0"
dependencies = [
 "memchr",
]

[[package]]
name = "anes"
version = "0.1.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4b46cbb362ab8752921c97e041f5e366ee6297bd428a31275b9fcf1e380f7299"

[[package]]
name = "ansi_term"
version = "0.12.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d52a9bb7ec0cf484c551830a7ce27bd20d67eac647e1befb56b0be4ee39a55d2"
dependencies = [
 "winapi",
]

[[package]]
name = "anstyle"
version = "1.0.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8901269c6307e8d93993578286ac0edf7f195079ffff5ebdeea6a59ffb7e36bc"

[[package]]
name = "approx"
version = "0.5.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "cab112f0a86d568ea0e627cc1d6be74a1e9cd55214684db5561995f6dad897c6"
dependencies = [
 "num-traits",
]

[[package]]
name = "atty"
version = "0.2.14"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d9b39be18770d11421cdb1b9947a45dd3f37e93092cbf377614828a319d5fee8"
dependencies = [
 "hermit-abi 0.1.19",
 "libc",
 "winapi",
]

[[package]]
name = "autocfg"
version = "1.1.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d468802bab17cbc0cc575e9b053f41e72aa36bfa6b7f55e3529ffa43161b97fa"

[[package]]
name = "base64"
version = "0.13.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9e1b586273c5702936fe7b7d6896644d8be71e6314cfe09d3167c95f712589e8"

[[package]]
name = "bindgen"
version = "0.55.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "75b13ce559e6433d360c26305643803cb52cfbabbc2b9c47ce04a58493dfb443"
dependencies = [
 "bitflags",
 "cexpr",
 "cfg-if 0.1.10",
 "clang-sys",
 "clap 2.34.0",
 "env_logger",
 "lazy_static",
 "lazycell",
 "log",
 "peeking_take_while",
 "proc-macro2",
 "quote",
 "regex",
 "rustc-hash",
 "shlex 0.1.1",
 "which",
]

[[package]]
name = "bit_field"
version = "0.10.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "dc827186963e592360843fb5ba4b973e145841266c1357f7180c43526f2e5b61"

[[package]]
name = "bitflags"
version = "1.3.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "bef38d45163c2f1dde094a7dfd33ccf595c92905c8f8f4fdc18d06fb1037718a"

[[package]]
name = "bumpalo"
version = "3.15.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c764d619ca78fccbf3069b37bd7af92577f044bb15236036662d79b6559f25b7"

[[package]]
name = "bytemuck"
version = "1.14.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a2ef034f05691a48569bd920a96c81b9d91bbad1ab5ac7c4616c1f6ef36cb79f"

[[package]]
name = "byteorder"
version = "1.5.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "1fd0f2584146f6f2ef48085050886acf353beff7305ebd1ae69500e27c67f64b"

[[package]]
name = "cast"
version = "0.3.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "37b2a672a2cb129a2e41c10b1224bb368f9f37a2b16b612598138befd7b37eb5"

[[package]]
name = "cc"
version = "1.0.86"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7f9fa1897e4325be0d68d48df6aa1a71ac2ed4d27723887e7754192705350730"
dependencies = [
 "libc",
]

[[package]]
name = "cexpr"
version = "0.4.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f4aedb84272dbe89af497cf81375129abda4fc0a9e7c5d317498c15cc30c0d27"
dependencies = [
 "nom",
]

[[package]]
name = "cfg-if"
version = "0.1.10"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4785bdd1c96b2a846b2bd7cc02e86b6b3dbf14e7e53446c4f54c92a361040822"

[[package]]
name = "cfg-if"
version = "1.0.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "baf1de4339761588bc0619e3cbc0120ee582ebb74b53b4efbf79117bd2da40fd"

[[package]]
name = "ciborium"
version = "0.2.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "42e69ffd6f0917f5c029256a24d0161db17cea3997d185db0d35926308770f0e"
dependencies = [
 "ciborium-io",
 "ciborium-ll",
 "serde",
]

[[package]]
name = "ciborium-io"
version = "0.2.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "05afea1e0a06c9be33d539b876f1ce3692f4afea2cb41f740e7743225ed1c757"

[[package]]
name = "ciborium-ll"
version = "0.2.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "57663b653d948a338bfb3eeba9bb2fd5fcfaecb9e199e87e1eda4d9e8b240fd9"
dependencies = [
 "ciborium-io",
 "half",
]

[[package]]
name = "clang"
version = "2.0.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "84c044c781163c001b913cd018fc95a628c50d0d2dfea8bca77dad71edb16e37"
dependencies = [
 "clang-sys",
 "libc",
]

[[package]]
name = "clang-sys"
version = "1.7.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "67523a3b4be3ce1989d607a828d036249522dd9c1c8de7f4dd2dae43a37369d1"
dependencies = [
 "glob",
 "libc",
 "libloading",
]

[[package]]
name = "clap"
version = "2.34.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a0610544180c38b88101fecf2dd634b174a62eef6946f84dfc6a7127512b381c"
dependencies = [
 "ansi_term",
 "atty",
 "bitflags",
 "strsim",
 "textwrap",
 "unicode-width",
 "vec_map",
]

[[package]]
name = "clap"
version = "4.5.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c918d541ef2913577a0f9566e9ce27cb35b6df072075769e0b26cb5a554520da"
dependencies = [
 "clap_builder",
]

[[package]]
name = "clap_builder"
version = "4.5.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9f3e7391dad68afb0c2ede1bf619f579a3dc9c2ec67f089baa397123a2f3d1eb"
dependencies = [
 "anstyle",
 "clap_lex",
]

[[package]]
name = "clap_lex"
version = "0.7.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "98cc8fbded0c607b7ba9dd60cd98df59af97e84d24e49c8557331cfc26d301ce"

[[package]]
name = "color_quant"
version = "1.1.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3d7b894f5411737b7867f4827955924d7c254fc9f4d91a6aad6b097804b1018b"

[[package]]
name = "conv"
version = "0.3.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "78ff10625fd0ac447827aa30ea8b861fead473bb60aeb73af6c1c58caf0d1299"
dependencies = [
 "custom_derive",
]

[[package]]
name = "cpp"
version = "0.5.9"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "bfa65869ef853e45c60e9828aa08cdd1398cb6e13f3911d9cb2a079b144fcd64"
dependencies = [
 "cpp_macros",
]

[[package]]
name = "cpp_build"
version = "0.5.9"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "0e361fae2caf9758164b24da3eedd7f7d7451be30d90d8e7b5d2be29a2f0cf5b"
dependencies = [
 "cc",
 "cpp_common",
 "lazy_static",
 "proc-macro2",
 "regex",
 "syn 2.0.50",
 "unicode-xid",
]

[[package]]
name = "cpp_common"
version = "0.5.9"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3e1a2532e4ed4ea13031c13bc7bc0dbca4aae32df48e9d77f0d1e743179f2ea1"
dependencies = [
 "lazy_static",
 "proc-macro2",
 "syn 2.0.50",
]

[[package]]
name = "cpp_macros"
version = "0.5.9"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "47ec9cc90633446f779ef481a9ce5a0077107dd5b87016440448d908625a83fd"
dependencies = [
 "aho-corasick",
 "byteorder",
 "cpp_common",
 "lazy_static",
 "proc-macro2",
 "quote",
 "syn 2.0.50",
]

[[package]]
name = "crc32fast"
version = "1.4.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b3855a8a784b474f333699ef2bbca9db2c4a1f6d9088a90a2d25b1eb53111eaa"
dependencies = [
 "cfg-if 1.0.0",
]

[[package]]
name = "criterion"
version = "0.5.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f2b12d017a929603d80db1831cd3a24082f8137ce19c69e6447f54f5fc8d692f"
dependencies = [
 "anes",
 "cast",
 "ciborium",
 "clap 4.5.1",
 "criterion-plot",
 "is-terminal",
 "itertools 0.10.5",
 "num-traits",
 "once_cell",
 "oorandom",
 "plotters",
 "rayon",
 "regex",
 "serde",
 "serde_derive",
 "serde_json",
 "tinytemplate",
 "walkdir",
]

[[package]]
name = "criterion-plot"
version = "0.5.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "6b50826342786a51a89e2da3a28f1c32b06e387201bc2d19791f622c673706b1"
dependencies = [
 "cast",
 "itertools 0.10.5",
]

[[package]]
name = "crossbeam-deque"
version = "0.8.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "613f8cc01fe9cf1a3eb3d7f488fd2fa8388403e97039e2f73692932e291a770d"
dependencies = [
 "crossbeam-epoch",
 "crossbeam-utils",
]

[[package]]
name = "crossbeam-epoch"
version = "0.9.18"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5b82ac4a3c2ca9c3460964f020e1402edd5753411d7737aa39c3714ad1b5420e"
dependencies = [
 "crossbeam-utils",
]

[[package]]
name = "crossbeam-utils"
version = "0.8.19"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "248e3bacc7dc6baa3b21e405ee045c3047101a49145e7e9eca583ab4c2ca5345"

[[package]]
name = "crunchy"
version = "0.2.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7a81dae078cea95a014a339291cec439d2f232ebe854a9d672b796c6afafa9b7"

[[package]]
name = "custom_derive"
version = "0.1.7"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ef8ae57c4978a2acd8b869ce6b9ca1dfe817bff704c220209fdef2c0b75a01b9"

[[package]]
name = "dunce"
version = "1.0.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "56ce8c6da7551ec6c462cbaf3bfbc75131ebbfa1c944aeaa9dab51ca1c5f0c3b"

[[package]]
name = "either"
version = "1.10.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "11157ac094ffbdde99aa67b23417ebdd801842852b500e395a45a9c0aac03e4a"

[[package]]
name = "embed-doc-image"
version = "0.1.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "af36f591236d9d822425cb6896595658fa558fcebf5ee8accac1d4b92c47166e"
dependencies = [
 "base64",
 "proc-macro2",
 "quote",
 "syn 1.0.109",
]

[[package]]
name = "env_logger"
version = "0.7.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "44533bbbb3bb3c1fa17d9f2e4e38bbbaf8396ba82193c4cb1b6445d711445d36"
dependencies = [
 "atty",
 "humantime",
 "log",
 "regex",
 "termcolor",
]

[[package]]
name = "exr"
version = "1.72.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "887d93f60543e9a9362ef8a21beedd0a833c5d9610e18c67abe15a5963dcb1a4"
dependencies = [
 "bit_field",
 "flume",
 "half",
 "lebe",
 "miniz_oxide",
 "rayon-core",
 "smallvec",
 "zune-inflate",
]

[[package]]
name = "face"
version = "0.2.1"
dependencies = [
 "byteorder",
 "criterion",
 "embed-doc-image",
 "float-cmp",
 "image",
 "imageproc",
 "itertools 0.12.1",
 "nalgebra 0.32.4",
 "ndarray",
 "num_cpus",
 "opencv",
 "rusttype",
 "serde",
 "serde_json",
 "tflite",
]

[[package]]
name = "fdeflate"
version = "0.3.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4f9bfee30e4dedf0ab8b422f03af778d9612b63f502710fc500a334ebe2de645"
dependencies = [
 "simd-adler32",
]

[[package]]
name = "flate2"
version = "1.0.28"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "46303f565772937ffe1d394a4fac6f411c6013172fadde9dcdb1e147a086940e"
dependencies = [
 "crc32fast",
 "miniz_oxide",
]

[[package]]
name = "float-cmp"
version = "0.9.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "98de4bbd547a563b716d8dfa9aad1cb19bfab00f4fa09a6a4ed21dbcf44ce9c4"
dependencies = [
 "num-traits",
]

[[package]]
name = "flume"
version = "0.11.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "55ac459de2512911e4b674ce33cf20befaba382d05b62b008afc1c8b57cbf181"
dependencies = [
 "spin",
]

[[package]]
name = "getrandom"
version = "0.1.16"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8fc3cb4d91f53b50155bdcfd23f6a4c39ae1969c2ae85982b135750cccaf5fce"
dependencies = [
 "cfg-if 1.0.0",
 "libc",
 "wasi 0.9.0+wasi-snapshot-preview1",
]

[[package]]
name = "getrandom"
version = "0.2.12"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "190092ea657667030ac6a35e305e62fc4dd69fd98ac98631e5d3a2b1575a12b5"
dependencies = [
 "cfg-if 1.0.0",
 "libc",
 "wasi 0.11.0+wasi-snapshot-preview1",
]

[[package]]
name = "gif"
version = "0.12.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "80792593675e051cf94a4b111980da2ba60d4a83e43e0048c5693baab3977045"
dependencies = [
 "color_quant",
 "weezl",
]

[[package]]
name = "glob"
version = "0.3.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d2fabcfbdc87f4758337ca535fb41a6d701b65693ce38287d856d1674551ec9b"

[[package]]
name = "half"
version = "2.3.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "bc52e53916c08643f1b56ec082790d1e86a32e58dc5268f897f313fbae7b4872"
dependencies = [
 "cfg-if 1.0.0",
 "crunchy",
]

[[package]]
name = "hermit-abi"
version = "0.1.19"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "62b467343b94ba476dcb2500d242dadbb39557df889310ac77c5d99100aaac33"
dependencies = [
 "libc",
]

[[package]]
name = "hermit-abi"
version = "0.3.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "bd5256b483761cd23699d0da46cc6fd2ee3be420bbe6d020ae4a091e70b7e9fd"

[[package]]
name = "humantime"
version = "1.3.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "df004cfca50ef23c36850aaaa59ad52cc70d0e90243c3c7737a4dd32dc7a3c4f"
dependencies = [
 "quick-error",
]

[[package]]
name = "image"
version = "0.24.8"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "034bbe799d1909622a74d1193aa50147769440040ff36cb2baa947609b0a4e23"
dependencies = [
 "bytemuck",
 "byteorder",
 "color_quant",
 "exr",
 "gif",
 "jpeg-decoder",
 "num-traits",
 "png",
 "qoi",
 "tiff",
]

[[package]]
name = "imageproc"
version = "0.23.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b6aee993351d466301a29655d628bfc6f5a35a0d062b6160ca0808f425805fd7"
dependencies = [
 "approx",
 "conv",
 "image",
 "itertools 0.10.5",
 "nalgebra 0.30.1",
 "num",
 "rand",
 "rand_distr",
 "rayon",
 "rusttype",
]

[[package]]
name = "is-terminal"
version = "0.4.12"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f23ff5ef2b80d608d61efee834934d862cd92461afc0560dedf493e4c033738b"
dependencies = [
 "hermit-abi 0.3.6",
 "libc",
 "windows-sys 0.52.0",
]

[[package]]
name = "itertools"
version = "0.10.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b0fd2260e829bddf4cb6ea802289de2f86d6a7a690192fbe91b3f46e0f2c8473"
dependencies = [
 "either",
]

[[package]]
name = "itertools"
version = "0.12.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ba291022dbbd398a455acf126c1e341954079855bc60dfdda641363bd6922569"
dependencies = [
 "either",
]

[[package]]
name = "itoa"
version = "1.0.10"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b1a46d1a171d865aa5f83f92695765caa047a9b4cbae2cbf37dbd613a793fd4c"

[[package]]
name = "jobslot"
version = "0.2.15"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "1e21650a7eb4eb51339b77d6c015e8fcba5966ed2deea61df6cc653241be77fc"
dependencies = [
 "cfg-if 1.0.0",
 "getrandom 0.2.12",
 "libc",
 "scopeguard",
 "windows-sys 0.52.0",
]

[[package]]
name = "jpeg-decoder"
version = "0.3.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f5d4a7da358eff58addd2877a45865158f0d78c911d43a5784ceb7bbf52833b0"
dependencies = [
 "rayon",
]

[[package]]
name = "js-sys"
version = "0.3.68"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "406cda4b368d531c842222cf9d2600a9a4acce8d29423695379c6868a143a9ee"
dependencies = [
 "wasm-bindgen",
]

[[package]]
name = "lazy_static"
version = "1.4.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e2abad23fbc42b3700f2f279844dc832adb2b2eb069b2df918f455c4e18cc646"

[[package]]
name = "lazycell"
version = "1.3.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "830d08ce1d1d941e6b30645f1a0eb5643013d835ce3779a5fc208261dbe10f55"

[[package]]
name = "lebe"
version = "0.5.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "03087c2bad5e1034e8cace5926dec053fb3790248370865f5117a7d0213354c8"

[[package]]
name = "libc"
version = "0.2.153"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9c198f91728a82281a64e1f4f9eeb25d82cb32a5de251c6bd1b5154d63a8e7bd"

[[package]]
name = "libloading"
version = "0.8.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c571b676ddfc9a8c12f1f3d3085a7b163966a8fd8098a90640953ce5f6170161"
dependencies = [
 "cfg-if 1.0.0",
 "windows-sys 0.48.0",
]

[[package]]
name = "lock_api"
version = "0.4.11"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3c168f8615b12bc01f9c17e2eb0cc07dcae1940121185446edc3744920e8ef45"
dependencies = [
 "autocfg",
 "scopeguard",
]

[[package]]
name = "log"
version = "0.4.20"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b5e6163cb8c49088c2c36f57875e58ccd8c87c7427f7fbd50ea6710b2f3f2e8f"

[[package]]
name = "matrixmultiply"
version = "0.3.8"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7574c1cf36da4798ab73da5b215bbf444f50718207754cb522201d78d1cd0ff2"
dependencies = [
 "autocfg",
 "rawpointer",
]

[[package]]
name = "maybe-owned"
version = "0.3.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4facc753ae494aeb6e3c22f839b158aebd4f9270f55cd3c79906c45476c47ab4"

[[package]]
name = "memchr"
version = "2.7.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "523dc4f511e55ab87b694dc30d0f820d60906ef06413f93d4d7a1385599cc149"

[[package]]
name = "miniz_oxide"
version = "0.7.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9d811f3e15f28568be3407c8e7fdb6514c1cda3cb30683f15b6a1a1dc4ea14a7"
dependencies = [
 "adler",
 "simd-adler32",
]

[[package]]
name = "nalgebra"
version = "0.30.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4fb2d0de08694bed883320212c18ee3008576bfe8c306f4c3c4a58b4876998be"
dependencies = [
 "approx",
 "matrixmultiply",
 "num-complex",
 "num-rational",
 "num-traits",
 "simba 0.7.3",
 "typenum",
]

[[package]]
name = "nalgebra"
version = "0.32.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4541eb06dce09c0241ebbaab7102f0a01a0c8994afed2e5d0d66775016e25ac2"
dependencies = [
 "approx",
 "matrixmultiply",
 "nalgebra-macros",
 "num-complex",
 "num-rational",
 "num-traits",
 "simba 0.8.1",
 "typenum",
]

[[package]]
name = "nalgebra-macros"
version = "0.2.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "91761aed67d03ad966ef783ae962ef9bbaca728d2dd7ceb7939ec110fffad998"
dependencies = [
 "proc-macro2",
 "quote",
 "syn 1.0.109",
]

[[package]]
name = "ndarray"
version = "0.15.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "adb12d4e967ec485a5f71c6311fe28158e9d6f4bc4a447b474184d0f91a8fa32"
dependencies = [
 "matrixmultiply",
 "num-complex",
 "num-integer",
 "num-traits",
 "rawpointer",
]

[[package]]
name = "nom"
version = "5.1.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "08959a387a676302eebf4ddbcbc611da04285579f76f88ee0506c63b1a61dd4b"
dependencies = [
 "memchr",
 "version_check",
]

[[package]]
name = "num"
version = "0.4.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b05180d69e3da0e530ba2a1dae5110317e49e3b7f3d41be227dc5f92e49ee7af"
dependencies = [
 "num-bigint",
 "num-complex",
 "num-integer",
 "num-iter",
 "num-rational",
 "num-traits",
]

[[package]]
name = "num-bigint"
version = "0.4.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "608e7659b5c3d7cba262d894801b9ec9d00de989e8a82bd4bef91d08da45cdc0"
dependencies = [
 "autocfg",
 "num-integer",
 "num-traits",
]

[[package]]
name = "num-complex"
version = "0.4.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "23c6602fda94a57c990fe0df199a035d83576b496aa29f4e634a8ac6004e68a6"
dependencies = [
 "num-traits",
]

[[package]]
name = "num-integer"
version = "0.1.46"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7969661fd2958a5cb096e56c8e1ad0444ac2bbcd0061bd28660485a44879858f"
dependencies = [
 "num-traits",
]

[[package]]
name = "num-iter"
version = "0.1.44"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d869c01cc0c455284163fd0092f1f93835385ccab5a98a0dcc497b2f8bf055a9"
dependencies = [
 "autocfg",
 "num-integer",
 "num-traits",
]

[[package]]
name = "num-rational"
version = "0.4.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "0638a1c9d0a3c0914158145bc76cff373a75a627e6ecbfb71cbe6f453a5a19b0"
dependencies = [
 "autocfg",
 "num-bigint",
 "num-integer",
 "num-traits",
]

[[package]]
name = "num-traits"
version = "0.2.18"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "da0df0e5185db44f69b44f26786fe401b6c293d1907744beaa7fa62b2e5a517a"
dependencies = [
 "autocfg",
]

[[package]]
name = "num_cpus"
version = "1.16.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4161fcb6d602d4d2081af7c3a45852d875a03dd337a6bfdd6e06407b61342a43"
dependencies = [
 "hermit-abi 0.3.6",
 "libc",
]

[[package]]
name = "once_cell"
version = "1.19.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3fdb12b2476b595f9358c5161aa467c2438859caa136dec86c26fdd2efe17b92"

[[package]]
name = "oorandom"
version = "11.1.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "0ab1bc2a289d34bd04a330323ac98a1b4bc82c9d9fcb1e66b63caa84da26b575"

[[package]]
name = "opencv"
version = "0.88.8"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "96a686d8bc74fac172642bb5cb3fd2679ccc1b85d4f7ccedd273757174f1dbcd"
dependencies = [
 "cc",
 "dunce",
 "jobslot",
 "libc",
 "num-traits",
 "once_cell",
 "opencv-binding-generator",
 "pkg-config",
 "semver",
 "shlex 1.3.0",
 "vcpkg",
]

[[package]]
name = "opencv-binding-generator"
version = "0.84.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "6e842c276fd00b26100de550e2b47f6ded4f06213c62f0575cb7242aecde2efd"
dependencies = [
 "clang",
 "clang-sys",
 "dunce",
 "once_cell",
 "percent-encoding",
 "regex",
]

[[package]]
name = "owned_ttf_parser"
version = "0.15.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "05e6affeb1632d6ff6a23d2cd40ffed138e82f1532571a26f527c8a284bb2fbb"
dependencies = [
 "ttf-parser",
]

[[package]]
name = "paste"
version = "1.0.14"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "de3145af08024dea9fa9914f381a17b8fc6034dfb00f3a84013f7ff43f29ed4c"

[[package]]
name = "peeking_take_while"
version = "0.1.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "19b17cddbe7ec3f8bc800887bab5e717348c95ea2ca0b1bf0837fb964dc67099"

[[package]]
name = "percent-encoding"
version = "2.3.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e3148f5046208a5d56bcfc03053e3ca6334e51da8dfb19b6cdc8b306fae3283e"

[[package]]
name = "pkg-config"
version = "0.3.30"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d231b230927b5e4ad203db57bbcbee2802f6bce620b1e4a9024a07d94e2907ec"

[[package]]
name = "plotters"
version = "0.3.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d2c224ba00d7cadd4d5c660deaf2098e5e80e07846537c51f9cfa4be50c1fd45"
dependencies = [
 "num-traits",
 "plotters-backend",
 "plotters-svg",
 "wasm-bindgen",
 "web-sys",
]

[[package]]
name = "plotters-backend"
version = "0.3.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9e76628b4d3a7581389a35d5b6e2139607ad7c75b17aed325f210aa91f4a9609"

[[package]]
name = "plotters-svg"
version = "0.3.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "38f6d39893cca0701371e3c27294f09797214b86f1fb951b89ade8ec04e2abab"
dependencies = [
 "plotters-backend",
]

[[package]]
name = "png"
version = "0.17.13"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "06e4b0d3d1312775e782c86c91a111aa1f910cbb65e1337f9975b5f9a554b5e1"
dependencies = [
 "bitflags",
 "crc32fast",
 "fdeflate",
 "flate2",
 "miniz_oxide",
]

[[package]]
name = "ppv-lite86"
version = "0.2.17"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5b40af805b3121feab8a3c29f04d8ad262fa8e0561883e7653e024ae4479e6de"

[[package]]
name = "proc-macro2"
version = "1.0.78"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e2422ad645d89c99f8f3e6b88a9fdeca7fabeac836b1002371c4367c8f984aae"
dependencies = [
 "unicode-ident",
]

[[package]]
name = "qoi"
version = "0.4.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7f6d64c71eb498fe9eae14ce4ec935c555749aef511cca85b5568910d6e48001"
dependencies = [
 "bytemuck",
]

[[package]]
name = "quick-error"
version = "1.2.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a1d01941d82fa2ab50be1e79e6714289dd7cde78eba4c074bc5a4374f650dfe0"

[[package]]
name = "quote"
version = "1.0.35"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "291ec9ab5efd934aaf503a6466c5d5251535d108ee747472c3977cc5acc868ef"
dependencies = [
 "proc-macro2",
]

[[package]]
name = "rand"
version = "0.7.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "6a6b1679d49b24bbfe0c803429aa1874472f50d9b363131f0e89fc356b544d03"
dependencies = [
 "getrandom 0.1.16",
 "libc",
 "rand_chacha",
 "rand_core",
 "rand_hc",
]

[[package]]
name = "rand_chacha"
version = "0.2.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f4c8ed856279c9737206bf725bf36935d8666ead7aa69b52be55af369d193402"
dependencies = [
 "ppv-lite86",
 "rand_core",
]

[[package]]
name = "rand_core"
version = "0.5.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "90bde5296fc891b0cef12a6d03ddccc162ce7b2aff54160af9338f8d40df6d19"
dependencies = [
 "getrandom 0.1.16",
]

[[package]]
name = "rand_distr"
version = "0.2.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "96977acbdd3a6576fb1d27391900035bf3863d4a16422973a409b488cf29ffb2"
dependencies = [
 "rand",
]

[[package]]
name = "rand_hc"
version = "0.2.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ca3129af7b92a17112d59ad498c6f81eaf463253766b90396d39ea7a39d6613c"
dependencies = [
 "rand_core",
]

[[package]]
name = "rawpointer"
version = "0.2.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "60a357793950651c4ed0f3f52338f53b2f809f32d83a07f72909fa13e4c6c1e3"

[[package]]
name = "rayon"
version = "1.8.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "fa7237101a77a10773db45d62004a272517633fbcc3df19d96455ede1122e051"
dependencies = [
 "either",
 "rayon-core",
]

[[package]]
name = "rayon-core"
version = "1.12.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "1465873a3dfdaa8ae7cb14b4383657caab0b3e8a0aa9ae8e04b044854c8dfce2"
dependencies = [
 "crossbeam-deque",
 "crossbeam-utils",
]

[[package]]
name = "regex"
version = "1.10.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b62dbe01f0b06f9d8dc7d49e05a0785f153b00b2c227856282f671e0318c9b15"
dependencies = [
 "aho-corasick",
 "memchr",
 "regex-automata",
 "regex-syntax",
]

[[package]]
name = "regex-automata"
version = "0.4.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5bb987efffd3c6d0d8f5f89510bb458559eab11e4f869acb20bf845e016259cd"
dependencies = [
 "aho-corasick",
 "memchr",
 "regex-syntax",
]

[[package]]
name = "regex-syntax"
version = "0.8.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c08c74e62047bb2de4ff487b251e4a92e24f48745648451635cec7d591162d9f"

[[package]]
name = "rustc-hash"
version = "1.1.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "08d43f7aa6b08d49f382cde6a7982047c3426db949b1424bc4b7ec9ae12c6ce2"

[[package]]
name = "rusttype"
version = "0.9.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3ff8374aa04134254b7995b63ad3dc41c7f7236f69528b28553da7d72efaa967"
dependencies = [
 "ab_glyph_rasterizer",
 "owned_ttf_parser",
]

[[package]]
name = "ryu"
version = "1.0.17"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e86697c916019a8588c99b5fac3cead74ec0b4b819707a682fd4d23fa0ce1ba1"

[[package]]
name = "safe_arch"
version = "0.7.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f398075ce1e6a179b46f51bd88d0598b92b00d3551f1a2d4ac49e771b56ac354"
dependencies = [
 "bytemuck",
]

[[package]]
name = "same-file"
version = "1.0.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "93fc1dc3aaa9bfed95e02e6eadabb4baf7e3078b0bd1b4d7b6b0b68378900502"
dependencies = [
 "winapi-util",
]

[[package]]
name = "scopeguard"
version = "1.2.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "94143f37725109f92c262ed2cf5e59bce7498c01bcc1502d7b9afe439a4e9f49"

[[package]]
name = "semver"
version = "1.0.22"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "92d43fe69e652f3df9bdc2b85b2854a0825b86e4fb76bc44d945137d053639ca"

[[package]]
name = "serde"
version = "1.0.197"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3fb1c873e1b9b056a4dc4c0c198b24c3ffa059243875552b2bd0933b1aee4ce2"
dependencies = [
 "serde_derive",
]

[[package]]
name = "serde_derive"
version = "1.0.197"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7eb0b34b42edc17f6b7cac84a52a1c5f0e1bb2227e997ca9011ea3dd34e8610b"
dependencies = [
 "proc-macro2",
 "quote",
 "syn 2.0.50",
]

[[package]]
name = "serde_json"
version = "1.0.114"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c5f09b1bd632ef549eaa9f60a1f8de742bdbc698e6cee2095fc84dde5f549ae0"
dependencies = [
 "itoa",
 "ryu",
 "serde",
]

[[package]]
name = "shlex"
version = "0.1.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7fdf1b9db47230893d76faad238fd6097fd6d6a9245cd7a4d90dbd639536bbd2"

[[package]]
name = "shlex"
version = "1.3.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "0fda2ff0d084019ba4d7c6f371c95d8fd75ce3524c3cb8fb653a3023f6323e64"

[[package]]
name = "simba"
version = "0.7.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "2f3fd720c48c53cace224ae62bef1bbff363a70c68c4802a78b5cc6159618176"
dependencies = [
 "approx",
 "num-complex",
 "num-traits",
 "paste",
 "wide",
]

[[package]]
name = "simba"
version = "0.8.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "061507c94fc6ab4ba1c9a0305018408e312e17c041eb63bef8aa726fa33aceae"
dependencies = [
 "approx",
 "num-complex",
 "num-traits",
 "paste",
 "wide",
]

[[package]]
name = "simd-adler32"
version = "0.3.7"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d66dc143e6b11c1eddc06d5c423cfc97062865baf299914ab64caa38182078fe"

[[package]]
name = "smallvec"
version = "1.13.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e6ecd384b10a64542d77071bd64bd7b231f4ed5940fba55e98c3de13824cf3d7"

[[package]]
name = "spin"
version = "0.9.8"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "6980e8d7511241f8acf4aebddbb1ff938df5eebe98691418c4468d0b72a96a67"
dependencies = [
 "lock_api",
]

[[package]]
name = "strsim"
version = "0.8.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8ea5119cdb4c55b55d432abb513a0429384878c15dde60cc77b1c99de1a95a6a"

[[package]]
name = "syn"
version = "1.0.109"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "72b64191b275b66ffe2469e8af2c1cfe3bafa67b529ead792a6d0160888b4237"
dependencies = [
 "proc-macro2",
 "quote",
 "unicode-ident",
]

[[package]]
name = "syn"
version = "2.0.50"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "74f1bdc9872430ce9b75da68329d1c1746faf50ffac5f19e02b71e37ff881ffb"
dependencies = [
 "proc-macro2",
 "quote",
 "unicode-ident",
]

[[package]]
name = "termcolor"
version = "1.4.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "06794f8f6c5c898b3275aebefa6b8a1cb24cd2c6c79397ab15774837a0bc5755"
dependencies = [
 "winapi-util",
]

[[package]]
name = "textwrap"
version = "0.11.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d326610f408c7a4eb6f51c37c330e496b08506c9457c9d34287ecc38809fb060"
dependencies = [
 "unicode-width",
]

[[package]]
name = "tflite"
version = "0.9.6"
source = "git+https://github.com/p-hofer/tflite-rs#728c0054ad93b664d082086b17666fd308aa947e"
dependencies = [
 "bindgen",
 "cpp",
 "cpp_build",
 "libc",
 "maybe-owned",
 "thiserror",
]

[[package]]
name = "thiserror"
version = "1.0.57"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "1e45bcbe8ed29775f228095caf2cd67af7a4ccf756ebff23a306bf3e8b47b24b"
dependencies = [
 "thiserror-impl",
]

[[package]]
name = "thiserror-impl"
version = "1.0.57"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a953cb265bef375dae3de6663da4d3804eee9682ea80d8e2542529b73c531c81"
dependencies = [
 "proc-macro2",
 "quote",
 "syn 2.0.50",
]

[[package]]
name = "tiff"
version = "0.9.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ba1310fcea54c6a9a4fd1aad794ecc02c31682f6bfbecdf460bf19533eed1e3e"
dependencies = [
 "flate2",
 "jpeg-decoder",
 "weezl",
]

[[package]]
name = "tinytemplate"
version = "1.2.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "be4d6b5f19ff7664e8c98d03e2139cb510db9b0a60b55f8e8709b689d939b6bc"
dependencies = [
 "serde",
 "serde_json",
]

[[package]]
name = "ttf-parser"
version = "0.15.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7b3e06c9b9d80ed6b745c7159c40b311ad2916abb34a49e9be2653b90db0d8dd"

[[package]]
name = "typenum"
version = "1.17.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "42ff0bf0c66b8238c6f3b578df37d0b7848e55df8577b3f74f92a69acceeb825"

[[package]]
name = "unicode-ident"
version = "1.0.12"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3354b9ac3fae1ff6755cb6db53683adb661634f67557942dea4facebec0fee4b"

[[package]]
name = "unicode-width"
version = "0.1.11"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e51733f11c9c4f72aa0c160008246859e340b00807569a0da0e7a1079b27ba85"

[[package]]
name = "unicode-xid"
version = "0.2.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f962df74c8c05a667b5ee8bcf162993134c104e96440b663c8daa176dc772d8c"

[[package]]
name = "vcpkg"
version = "0.2.15"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "accd4ea62f7bb7a82fe23066fb0957d48ef677f6eeb8215f372f52e48bb32426"

[[package]]
name = "vec_map"
version = "0.8.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f1bddf1187be692e79c5ffeab891132dfb0f236ed36a43c7ed39f1165ee20191"

[[package]]
name = "version_check"
version = "0.9.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "49874b5167b65d7193b8aba1567f5c7d93d001cafc34600cee003eda787e483f"

[[package]]
name = "walkdir"
version = "2.4.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d71d857dc86794ca4c280d616f7da00d2dbfd8cd788846559a6813e6aa4b54ee"
dependencies = [
 "same-file",
 "winapi-util",
]

[[package]]
name = "wasi"
version = "0.9.0+wasi-snapshot-preview1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "cccddf32554fecc6acb585f82a32a72e28b48f8c4c1883ddfeeeaa96f7d8e519"

[[package]]
name = "wasi"
version = "0.11.0+wasi-snapshot-preview1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9c8d87e72b64a3b4db28d11ce29237c246188f4f51057d65a7eab63b7987e423"

[[package]]
name = "wasm-bindgen"
version = "0.2.91"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c1e124130aee3fb58c5bdd6b639a0509486b0338acaaae0c84a5124b0f588b7f"
dependencies = [
 "cfg-if 1.0.0",
 "wasm-bindgen-macro",
]

[[package]]
name = "wasm-bindgen-backend"
version = "0.2.91"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c9e7e1900c352b609c8488ad12639a311045f40a35491fb69ba8c12f758af70b"
dependencies = [
 "bumpalo",
 "log",
 "once_cell",
 "proc-macro2",
 "quote",
 "syn 2.0.50",
 "wasm-bindgen-shared",
]

[[package]]
name = "wasm-bindgen-macro"
version = "0.2.91"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b30af9e2d358182b5c7449424f017eba305ed32a7010509ede96cdc4696c46ed"
dependencies = [
 "quote",
 "wasm-bindgen-macro-support",
]

[[package]]
name = "wasm-bindgen-macro-support"
version = "0.2.91"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "642f325be6301eb8107a83d12a8ac6c1e1c54345a7ef1a9261962dfefda09e66"
dependencies = [
 "proc-macro2",
 "quote",
 "syn 2.0.50",
 "wasm-bindgen-backend",
 "wasm-bindgen-shared",
]

[[package]]
name = "wasm-bindgen-shared"
version = "0.2.91"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4f186bd2dcf04330886ce82d6f33dd75a7bfcf69ecf5763b89fcde53b6ac9838"

[[package]]
name = "web-sys"
version = "0.3.68"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "96565907687f7aceb35bc5fc03770a8a0471d82e479f25832f54a0e3f4b28446"
dependencies = [
 "js-sys",
 "wasm-bindgen",
]

[[package]]
name = "weezl"
version = "0.1.8"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "53a85b86a771b1c87058196170769dd264f66c0782acf1ae6cc51bfd64b39082"

[[package]]
name = "which"
version = "3.1.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d011071ae14a2f6671d0b74080ae0cd8ebf3a6f8c9589a2cd45f23126fe29724"
dependencies = [
 "libc",
]

[[package]]
name = "wide"
version = "0.7.15"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "89beec544f246e679fc25490e3f8e08003bc4bf612068f325120dad4cea02c1c"
dependencies = [
 "bytemuck",
 "safe_arch",
]

[[package]]
name = "winapi"
version = "0.3.9"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5c839a674fcd7a98952e593242ea400abe93992746761e38641405d28b00f419"
dependencies = [
 "winapi-i686-pc-windows-gnu",
 "winapi-x86_64-pc-windows-gnu",
]

[[package]]
name = "winapi-i686-pc-windows-gnu"
version = "0.4.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ac3b87c63620426dd9b991e5ce0329eff545bccbbb34f3be09ff6fb6ab51b7b6"

[[package]]
name = "winapi-util"
version = "0.1.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f29e6f9198ba0d26b4c9f07dbe6f9ed633e1f3d5b8b414090084349e46a52596"
dependencies = [
 "winapi",
]

[[package]]
name = "winapi-x86_64-pc-windows-gnu"
version = "0.4.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "712e227841d057c1ee1cd2fb22fa7e5a5461ae8e48fa2ca79ec42cfc1931183f"

[[package]]
name = "windows-sys"
version = "0.48.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "677d2418bec65e3338edb076e806bc1ec15693c5d0104683f2efe857f61056a9"
dependencies = [
 "windows-targets 0.48.5",
]

[[package]]
name = "windows-sys"
version = "0.52.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "282be5f36a8ce781fad8c8ae18fa3f9beff57ec1b52cb3de0789201425d9a33d"
dependencies = [
 "windows-targets 0.52.0",
]

[[package]]
name = "windows-targets"
version = "0.48.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9a2fa6e2155d7247be68c096456083145c183cbbbc2764150dda45a87197940c"
dependencies = [
 "windows_aarch64_gnullvm 0.48.5",
 "windows_aarch64_msvc 0.48.5",
 "windows_i686_gnu 0.48.5",
 "windows_i686_msvc 0.48.5",
 "windows_x86_64_gnu 0.48.5",
 "windows_x86_64_gnullvm 0.48.5",
 "windows_x86_64_msvc 0.48.5",
]

[[package]]
name = "windows-targets"
version = "0.52.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8a18201040b24831fbb9e4eb208f8892e1f50a37feb53cc7ff887feb8f50e7cd"
dependencies = [
 "windows_aarch64_gnullvm 0.52.0",
 "windows_aarch64_msvc 0.52.0",
 "windows_i686_gnu 0.52.0",
 "windows_i686_msvc 0.52.0",
 "windows_x86_64_gnu 0.52.0",
 "windows_x86_64_gnullvm 0.52.0",
 "windows_x86_64_msvc 0.52.0",
]

[[package]]
name = "windows_aarch64_gnullvm"
version = "0.48.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "2b38e32f0abccf9987a4e3079dfb67dcd799fb61361e53e2882c3cbaf0d905d8"

[[package]]
name = "windows_aarch64_gnullvm"
version = "0.52.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "cb7764e35d4db8a7921e09562a0304bf2f93e0a51bfccee0bd0bb0b666b015ea"

[[package]]
name = "windows_aarch64_msvc"
version = "0.48.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "dc35310971f3b2dbbf3f0690a219f40e2d9afcf64f9ab7cc1be722937c26b4bc"

[[package]]
name = "windows_aarch64_msvc"
version = "0.52.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "bbaa0368d4f1d2aaefc55b6fcfee13f41544ddf36801e793edbbfd7d7df075ef"

[[package]]
name = "windows_i686_gnu"
version = "0.48.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a75915e7def60c94dcef72200b9a8e58e5091744960da64ec734a6c6e9b3743e"

[[package]]
name = "windows_i686_gnu"
version = "0.52.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a28637cb1fa3560a16915793afb20081aba2c92ee8af57b4d5f28e4b3e7df313"

[[package]]
name = "windows_i686_msvc"
version = "0.48.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8f55c233f70c4b27f66c523580f78f1004e8b5a8b659e05a4eb49d4166cca406"

[[package]]
name = "windows_i686_msvc"
version = "0.52.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ffe5e8e31046ce6230cc7215707b816e339ff4d4d67c65dffa206fd0f7aa7b9a"

[[package]]
name = "windows_x86_64_gnu"
version = "0.48.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "53d40abd2583d23e4718fddf1ebec84dbff8381c07cae67ff7768bbf19c6718e"

[[package]]
name = "windows_x86_64_gnu"
version = "0.52.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3d6fa32db2bc4a2f5abeacf2b69f7992cd09dca97498da74a151a3132c26befd"

[[package]]
name = "windows_x86_64_gnullvm"
version = "0.48.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "0b7b52767868a23d5bab768e390dc5f5c55825b6d30b86c844ff2dc7414044cc"

[[package]]
name = "windows_x86_64_gnullvm"
version = "0.52.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "1a657e1e9d3f514745a572a6846d3c7aa7dbe1658c056ed9c3344c4109a6949e"

[[package]]
name = "windows_x86_64_msvc"
version = "0.48.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ed94fce61571a4006852b7389a063ab983c02eb1bb37b47f8272ce92d06d9538"

[[package]]
name = "windows_x86_64_msvc"
version = "0.52.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "dff9641d1cd4be8d1a070daf9e3773c5f67e78b4d9d42263020c057706765c04"

[[package]]
name = "zune-inflate"
version = "0.2.54"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "73ab332fe2f6680068f3582b16a24f90ad7096d5d39b974d1c0aff0125116f02"
dependencies = [
 "simd-adler32",
]

face-lib/Cargo.toml

[package]
name = "face"
version = "0.2.1"
edition = "2021"

[features]
default = ["realface"]
retinaface = ["dep:tflite", "num_cpus", "serde_json", "serde", "itertools"]
fastdet = ["opencv", "byteorder"]
warp = ["nalgebra", "imageproc"]
arcface = ["dep:tflite", "ndarray"]
vis = ["imageproc", "rusttype"]
realface = ["fastdet", "retinaface", "warp", "arcface"]

See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
image = "0.24"
tflite = { git = "https://github.com/p-hofer/tflite-rs", default-features = false, optional = true}
num_cpus = { version = "1.14", optional = true }
serde_json = { version="1.0", optional = true }
serde = { version="1.0", features = ["derive"], optional = true }
itertools = { version = "0.12", optional = true }
opencv = { version = "0.88", features = ["clang-runtime"], optional = true }
byteorder = { version = "1.4", optional = true }
criterion = { version = "0.5", features = ["html_reports"]}
imageproc = { version = "0.23", optional = true }
rusttype = { version = "0.9", optional = true }
nalgebra = { version = "0.32", optional = true }
ndarray = {version = "0.15", optional = true }
embed-doc-image = "0.1"

[dev-dependencies]
float-cmp = "0.9"

[[bench]]
name = "benches"
harness = false

face-lib/.cargo/config

[net]
git-fetch-with-cli = true

face-lib/flake.lock

{
 "nodes": {
 "mozpkgs": {
 "flake": false,
 "locked": {
 "lastModified": 1695805681,
 "narHash": "sha256-1ElPLD8eFfnuIk0G52HGGpRtQZ4QPCjChRlEOfkZ5ro=",
 "owner": "mozilla",
 "repo": "nixpkgs-mozilla",
 "rev": "6eabade97bc28d707a8b9d82ad13ef143836736e",
 "type": "github"
 },
 "original": {
 "owner": "mozilla",
 "repo": "nixpkgs-mozilla",
 "type": "github"
 }
 },
 "naersk": {
 "inputs": {
 "nixpkgs": "nixpkgs"
 },
 "locked": {
 "lastModified": 1698420672,
 "narHash": "sha256-/TdeHMPRjjdJub7p7+w55vyABrsJlt5QkznPYy55vKA=",
 "owner": "nmattia",
 "repo": "naersk",
 "rev": "aeb58d5e8faead8980a807c840232697982d47b9",
 "type": "github"
 },
 "original": {
 "owner": "nmattia",
 "repo": "naersk",
 "type": "github"
 }
 },
 "nixpkgs": {
 "locked": {
 "lastModified": 1699725108,
 "narHash": "sha256-NTiPW4jRC+9puakU4Vi8WpFEirhp92kTOSThuZke+FA=",
 "owner": "NixOS",
 "repo": "nixpkgs",
 "rev": "911ad1e67f458b6bcf0278fa85e33bb9924fed7e",
 "type": "github"
 },
 "original": {
 "id": "nixpkgs",
 "type": "indirect"
 }
 },
 "nixpkgs-flatbuffers": {
 "locked": {
 "lastModified": 1650308445,
 "narHash": "sha256-3muuhz3fjtF1bz32UXOYCho51E8JSeEwo2iDZFQJdXo=",
 "owner": "nixOS",
 "repo": "nixpkgs",
 "rev": "d1c3fea7ecbed758168787fe4e4a3157e52bc808",
 "type": "github"
 },
 "original": {
 "owner": "nixOS",
 "repo": "nixpkgs",
 "rev": "d1c3fea7ecbed758168787fe4e4a3157e52bc808",
 "type": "github"
 }
 },
 "nixpkgs_2": {
 "locked": {
 "lastModified": 1686519857,
 "narHash": "sha256-VkBhuq67aXXiCoEmicziuDLUPPjeOTLQoj6OeVai5zM=",
 "owner": "nixOS",
 "repo": "nixpkgs",
 "rev": "6b1b72c0f887a478a5aac355674ff6df0fc44f44",
 "type": "github"
 },
 "original": {
 "owner": "nixOS",
 "repo": "nixpkgs",
 "rev": "6b1b72c0f887a478a5aac355674ff6df0fc44f44",
 "type": "github"
 }
 },
 "root": {
 "inputs": {
 "mozpkgs": "mozpkgs",
 "naersk": "naersk",
 "nixpkgs": "nixpkgs_2",
 "nixpkgs-flatbuffers": "nixpkgs-flatbuffers",
 "utils": "utils"
 }
 },
 "systems": {
 "locked": {
 "lastModified": 1681028828,
 "narHash": "sha256-Vy1rq5AaRuLzOxct8nz4T6wlgyUR7zLU309k9mBC768=",
 "owner": "nix-systems",
 "repo": "default",
 "rev": "da67096a3b9bf56a91d16901293e51ba5b49a27e",
 "type": "github"
 },
 "original": {
 "owner": "nix-systems",
 "repo": "default",
 "type": "github"
 }
 },
 "utils": {
 "inputs": {
 "systems": "systems"
 },
 "locked": {
 "lastModified": 1694529238,
 "narHash": "sha256-zsNZZGTGnMOf9YpHKJqMSsa0dXbfmxeoJ7xHlrt+xmY=",
 "owner": "numtide",
 "repo": "flake-utils",
 "rev": "ff7b65b44d01cf9ba6a71320833626af21126384",
 "type": "github"
 },
 "original": {
 "owner": "numtide",
 "repo": "flake-utils",
 "type": "github"
 }
 }
 },
 "root": "root",
 "version": 7
}

occluded-facedetection-performance/requirements.txt

tensorflow==2.3.1
mtcnn==0.1.0
face-detection==0.2.1
tqdm==4.50.0
ipykernel==5.3.4
face-recognition==1.3.0
git+https://github.com/elliottzheng/face-detection.git@master

occluded-facedetection-performance/FacedetectionInterface.py

Licensed under the EUPL.

import time
import cv2

class FacedetectionInterface:
 def __init__(self):
 self.duration_each_img = []

 def get_amount_faces_from_path(self, path):
 start = time.time()
 img = cv2.cvtColor(cv2.imread(path), cv2.COLOR_BGR2RGB)
 amount_faces = self.get_amount_faces_from_img(img)
 self.duration_each_img.append(time.time()-start)
 return amount_faces

 def get_amount_faces_from_img(self, cv2_img) -> int:
 pass

 def has_one_face(self, path):
 return self.get_amount_faces_from_path(path) == 1

 def get_avg_computationtime_per_image(self):
 return "{} s".format(sum(self.duration_each_img) / len(self.duration_each_img))

occluded-facedetection-performance/OccludedFacedetection.py

Licensed under the EUPL.

from facerec.faceextractor import FaceExtractor
from FaceAnalysis import FaceAnalysis

from detectionalgorithms.MyMTCNN import MyMTCNN
from detectionalgorithms.MyRetinaFace import MyRetinaFace
from detectionalgorithms.MyDLIB import MyDLIB

from datasets.CFPfrontal import CFPFrontal
from datasets.CFPprofile import CFPProfile
from datasets.afdb import AFDB

from pathlib import Path
import numpy as np
from tqdm import tqdm
import cv2
from PIL import Image

extractor = FaceExtractor()
mt = MyMTCNN()
rf = MyRetinaFace()
dl = MyDLIB()

path="~/Downloads/" # Path which contains 'cfp-dataset'

def print_results(name):
 dataset = CFPFrontal("~/Downloads/" + name)

 print("=== {} ===".format(name))
 analysis = FaceAnalysis(mt,dataset)
 analysis.calcAcc(copy_file_to_downloads_folder=False)
 print("= MTCNN =")
 print(analysis)

 analysis = FaceAnalysis(rf,dataset)
 analysis.calcAcc(copy_file_to_downloads_folder=False)
 print("= RETINAFACE =")
 print(analysis)

 analysis = FaceAnalysis(dl,dataset)
 analysis.calcAcc(copy_file_to_downloads_folder=False)
 print("= DLIB =")
 print(analysis)

name = "cfp-no-eyes-perc"
original_path=os.path.join(path,"cfp-dataset/Data/Images")
new_path=os.path.join(path,name+"/Data/Images")
for person_nr in tqdm(os.listdir(original_path)):
 frontal_path = os.path.join(original_path, person_nr, "frontal")
 Path(os.path.join(new_path, person_nr, "frontal")).mkdir(parents=True, exist_ok=True)
 for img_nr in os.listdir(frontal_path):
 img_path = os.path.join(frontal_path, img_nr)
 img = cv2.imread(img_path)
 img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
 landmarks = extractor.get_landmarks_from_path(img_path)
 if len(landmarks) == 1:
 left_eye = landmarks[0]["keypoints"]["left_eye"][1]
 right_eye = landmarks[0]["keypoints"]["right_eye"][1]

 min_eye = min(left_eye,right_eye)
 max_eye = max(left_eye,right_eye)
 img[int(min_eye-img.shape[0]/10):int(max_eye+img.shape[0]/10), :, :] = 0
 img_to_print = Image.fromarray(img.astype(np.uint8))
 new_path_img = os.path.join(new_path, person_nr, "frontal", img_nr)
 img_to_print.save(new_path_img)
 else:
 pass
 #print("{} has {} faces".format(img_path, len(landmarks)))

print_results(name)

name = "cfp-no-eyes-fixed"
original_path=os.path.join(path,"cfp-dataset/Data/Images")
new_path=os.path.join(path,name+"/Data/Images")
for person_nr in tqdm(os.listdir(original_path)):
 frontal_path = os.path.join(original_path, person_nr, "frontal")
 Path(os.path.join(new_path, person_nr, "frontal")).mkdir(parents=True, exist_ok=True)
 for img_nr in os.listdir(frontal_path):
 img_path = os.path.join(frontal_path, img_nr)
 img = cv2.imread(img_path)
 img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
 landmarks = extractor.get_landmarks_from_path(img_path)
 if len(landmarks) == 1:
 left_eye = landmarks[0]["keypoints"]["left_eye"][1]
 right_eye = landmarks[0]["keypoints"]["right_eye"][1]

 min_eye = min(left_eye,right_eye)
 max_eye = max(left_eye,right_eye)
 img[int(min_eye-5):int(max_eye+5), :, :] = 0

 img_to_print = Image.fromarray(img.astype(np.uint8))
 new_path_img = os.path.join(new_path, person_nr, "frontal", img_nr)
 img_to_print.save(new_path_img)
 else:
 pass
 #print("{} has {} faces".format(img_path, len(landmarks)))

print_results(name)

name = "cfp-no-eyes-rectangle"
original_path=os.path.join(path,"cfp-dataset/Data/Images")
new_path=os.path.join(path,name+"/Data/Images")
for person_nr in tqdm(os.listdir(original_path)):
 frontal_path = os.path.join(original_path, person_nr, "frontal")
 Path(os.path.join(new_path, person_nr, "frontal")).mkdir(parents=True, exist_ok=True)
 for img_nr in os.listdir(frontal_path):
 img_path = os.path.join(frontal_path, img_nr)
 img = cv2.imread(img_path)
 img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
 landmarks = extractor.get_landmarks_from_path(img_path)
 if len(landmarks) == 1:
 left=landmarks[0]["keypoints"]["left_eye"]
 right=landmarks[0]["keypoints"]["right_eye"]

 width=int(abs(right[0]-left[0])/10)
 img[left[1]-width:left[1]+width, left[0]-width*3:left[0]+width*3, :] = 0
 img[right[1]-width:right[1]+width, right[0]-width*3:right[0]+width*3, :] = 0

 img_to_print = Image.fromarray(img.astype(np.uint8))
 new_path_img = os.path.join(new_path, person_nr, "frontal", img_nr)
 img_to_print.save(new_path_img)
 else:
 pass
 #print("{} has {} faces".format(img_path, len(landmarks)))

print_results(name)

name = "cfp-top-half-only"
original_path=os.path.join(path,"cfp-dataset/Data/Images")
new_path=os.path.join(path,name+"/Data/Images")
for person_nr in tqdm(os.listdir(original_path)):
 frontal_path = os.path.join(original_path, person_nr, "frontal")
 Path(os.path.join(new_path, person_nr, "frontal")).mkdir(parents=True, exist_ok=True)
 for img_nr in os.listdir(frontal_path):
 img_path = os.path.join(frontal_path, img_nr)
 img = cv2.imread(img_path)
 img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
 landmarks = extractor.get_landmarks_from_path(img_path)
 if len(landmarks) == 1:
 landmarks = landmarks[0]
 nose = landmarks["keypoints"]["nose"]
 img[int(nose[1]+nose[1]/20):, :, :] = 0

 img_to_print = Image.fromarray(img.astype(np.uint8))
 new_path_img = os.path.join(new_path, person_nr, "frontal", img_nr)
 img_to_print.save(new_path_img)
 else:
 pass
 #print("{} has {} faces".format(img_path, len(landmarks)))

print_results(name)

name = "cfp-top-half-only-mask"
original_path=os.path.join(path,"cfp-dataset/Data/Images")
new_path=os.path.join(path,name+"/Data/Images")
for person_nr in tqdm(os.listdir(original_path)):
 frontal_path = os.path.join(original_path, person_nr, "frontal")
 Path(os.path.join(new_path, person_nr, "frontal")).mkdir(parents=True, exist_ok=True)
 for img_nr in os.listdir(frontal_path):
 img_path = os.path.join(frontal_path, img_nr)
 img = cv2.imread(img_path)
 img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
 landmarks = extractor.get_landmarks_from_path(img_path)
 if len(landmarks) == 1:
 left_eye = landmarks[0]["keypoints"]["left_eye"][1]
 right_eye = landmarks[0]["keypoints"]["right_eye"][1]
 min_eye = max(left_eye,right_eye)
 nose = landmarks[0]["keypoints"]["nose"][1]
 middle = int((nose+min_eye)/2)
 img[middle:, :, :] = 0

 img_to_print = Image.fromarray(img.astype(np.uint8))
 new_path_img = os.path.join(new_path, person_nr, "frontal", img_nr)
 img_to_print.save(new_path_img)
 else:
 pass
 #print("{} has {} faces".format(img_path, len(landmarks)))

print_results(name)

name = "cfp-no-top"
original_path=os.path.join(path,"cfp-dataset/Data/Images")
new_path=os.path.join(path,name+"/Data/Images")
for person_nr in tqdm(os.listdir(original_path)):
 frontal_path = os.path.join(original_path, person_nr, "frontal")
 Path(os.path.join(new_path, person_nr, "frontal")).mkdir(parents=True, exist_ok=True)
 for img_nr in os.listdir(frontal_path):
 img_path = os.path.join(frontal_path, img_nr)
 img = cv2.imread(img_path)
 img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
 landmarks = extractor.get_landmarks_from_path(img_path)
 if len(landmarks) == 1:
 keypoints = landmarks[0]["keypoints"]
 offset = 25
 eye = min(keypoints["left_eye"][1]-offset, keypoints["right_eye"][1]-offset)
 img[:int(eye), :, :] = 0

 img_to_print = Image.fromarray(img.astype(np.uint8))
 new_path_img = os.path.join(new_path, person_nr, "frontal", img_nr)
 img_to_print.save(new_path_img)
 else:
 pass
 #print("{} has {} faces".format(img_path, len(landmarks)))

print_results(name)

import random

for i in range(10):
 name = "cfp-random-black-bars-{}".format(i)
 original_path=os.path.join(path,"cfp-dataset/Data/Images")
 new_path=os.path.join(path,name+"/Data/Images")
 for person_nr in tqdm(os.listdir(original_path)):
 frontal_path = os.path.join(original_path, person_nr, "frontal")
 Path(os.path.join(new_path, person_nr, "frontal")).mkdir(parents=True, exist_ok=True)
 for img_nr in os.listdir(frontal_path):
 img_path = os.path.join(frontal_path, img_nr)
 img = cv2.imread(img_path)
 img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
 landmarks = extractor.get_landmarks_from_path(img_path)
 if len(landmarks) == 1:
 height = int(img.shape[0]/10)
 start_y = random.randint(0,int(img.shape[0]-height))
 img[start_y-height:start_y+height, :, :] = 0

 img_to_print = Image.fromarray(img.astype(np.uint8))
 new_path_img = os.path.join(new_path, person_nr, "frontal", img_nr)
 img_to_print.save(new_path_img)
 else:
 pass
 #print("{} has {} faces".format(img_path, len(landmarks)))

 print_results(name)

name = "cfp-top-half-only-more"
original_path=os.path.join(path,"cfp-dataset/Data/Images")
new_path=os.path.join(path,name+"/Data/Images")
for person_nr in tqdm(os.listdir(original_path)):
 frontal_path = os.path.join(original_path, person_nr, "frontal")
 Path(os.path.join(new_path, person_nr, "frontal")).mkdir(parents=True, exist_ok=True)
 for img_nr in os.listdir(frontal_path):
 img_path = os.path.join(frontal_path, img_nr)
 img = cv2.imread(img_path)
 img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
 landmarks = extractor.get_landmarks_from_path(img_path)
 if len(landmarks) == 1:
 landmarks = landmarks[0]
 nose = landmarks["keypoints"]["nose"]
 img[int(nose[1]+nose[1]/10):, :, :] = 0

 img_to_print = Image.fromarray(img.astype(np.uint8))
 new_path_img = os.path.join(new_path, person_nr, "frontal", img_nr)
 img_to_print.save(new_path_img)
 else:
 pass
 #print("{} has {} faces".format(img_path, len(landmarks)))

print_results(name)

name = "cfp-vert-bar-larger"
original_path=os.path.join(path,"cfp-dataset/Data/Images")
new_path=os.path.join(path,name+"/Data/Images")
for person_nr in tqdm(os.listdir(original_path)):
 frontal_path = os.path.join(original_path, person_nr, "frontal")
 Path(os.path.join(new_path, person_nr, "frontal")).mkdir(parents=True, exist_ok=True)
 for img_nr in os.listdir(frontal_path):
 img_path = os.path.join(frontal_path, img_nr)
 img = cv2.imread(img_path)
 img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
 landmarks = extractor.get_landmarks_from_path(img_path)
 if len(landmarks) == 1:
 landmarks = landmarks[0]
 nose = landmarks["keypoints"]["nose"]
 img[:, int(nose[0]+nose[0]/10):, :] = 0

 img_to_print = Image.fromarray(img.astype(np.uint8))
 new_path_img = os.path.join(new_path, person_nr, "frontal", img_nr)
 img_to_print.save(new_path_img)
 else:
 pass
 #print("{} has {} faces".format(img_path, len(landmarks)))

print_results(name)

name = "cfp-vert-bar-larger-small"
original_path=os.path.join(path,"cfp-dataset/Data/Images")
new_path=os.path.join(path,name+"/Data/Images")
for person_nr in tqdm(os.listdir(original_path)):
 frontal_path = os.path.join(original_path, person_nr, "frontal")
 Path(os.path.join(new_path, person_nr, "frontal")).mkdir(parents=True, exist_ok=True)
 for img_nr in os.listdir(frontal_path):
 img_path = os.path.join(frontal_path, img_nr)
 img = cv2.imread(img_path)
 img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
 landmarks = extractor.get_landmarks_from_path(img_path)
 if len(landmarks) == 1:
 landmarks = landmarks[0]
 nose = landmarks["keypoints"]["nose"]
 img[:, int(nose[0]+nose[0]/5):, :] = 0

 img_to_print = Image.fromarray(img.astype(np.uint8))
 new_path_img = os.path.join(new_path, person_nr, "frontal", img_nr)
 img_to_print.save(new_path_img)
 else:
 pass
 #print("{} has {} faces".format(img_path, len(landmarks)))

print_results(name)

name = "cfp-vert-bars"
original_path=os.path.join(path,"cfp-dataset/Data/Images")
new_path=os.path.join(path,name+"/Data/Images")
for person_nr in tqdm(os.listdir(original_path)):
 frontal_path = os.path.join(original_path, person_nr, "frontal")
 Path(os.path.join(new_path, person_nr, "frontal")).mkdir(parents=True, exist_ok=True)
 for img_nr in os.listdir(frontal_path):
 img_path = os.path.join(frontal_path, img_nr)
 img = cv2.imread(img_path)
 img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
 landmarks = extractor.get_landmarks_from_path(img_path)
 if len(landmarks) == 1:
 img_path = os.path.join(frontal_path, img_nr)
 img = cv2.imread(img_path)
 img[:, int(img.shape[0]*2/3):, :] = 0

 img_to_print = Image.fromarray(img.astype(np.uint8))
 new_path_img = os.path.join(new_path, person_nr, "frontal", img_nr)
 img_to_print.save(new_path_img)
 else:
 pass
 #print("{} has {} faces".format(img_path, len(landmarks)))

print_results(name)

occluded-facedetection-performance/FacedatasetInterface.py

Licensed under the EUPL.

class FacedatasetInterface:
 def get_paths_to_imgs(self):
 return self.img_paths

occluded-facedetection-performance/.gitignore

__pycache__/
*/__pycache__/
env/
.ipynb_checkpoints/

occluded-facedetection-performance/LICENSE

 EUROPEAN UNION PUBLIC LICENCE v. 1.2
 EUPL © the European Union 2007, 2016

This European Union Public Licence (the ‘EUPL’) applies to the Work (as defined
below) which is provided under the terms of this Licence. Any use of the Work,
other than as authorised under this Licence is prohibited (to the extent such
use is covered by a right of the copyright holder of the Work).

The Work is provided under the terms of this Licence when the Licensor (as
defined below) has placed the following notice immediately following the
copyright notice for the Work:

 Licensed under the EUPL

or has expressed by any other means his willingness to license under the EUPL.

1. Definitions

In this Licence, the following terms have the following meaning:

- ‘The Licence’: this Licence.

- ‘The Original Work’: the work or software distributed or communicated by the
 Licensor under this Licence, available as Source Code and also as Executable
 Code as the case may be.

- ‘Derivative Works’: the works or software that could be created by the
 Licensee, based upon the Original Work or modifications thereof. This Licence
 does not define the extent of modification or dependence on the Original Work
 required in order to classify a work as a Derivative Work; this extent is
 determined by copyright law applicable in the country mentioned in Article 15.

- ‘The Work’: the Original Work or its Derivative Works.

- ‘The Source Code’: the human-readable form of the Work which is the most
 convenient for people to study and modify.

- ‘The Executable Code’: any code which has generally been compiled and which is
 meant to be interpreted by a computer as a program.

- ‘The Licensor’: the natural or legal person that distributes or communicates
 the Work under the Licence.

- ‘Contributor(s)’: any natural or legal person who modifies the Work under the
 Licence, or otherwise contributes to the creation of a Derivative Work.

- ‘The Licensee’ or ‘You’: any natural or legal person who makes any usage of
 the Work under the terms of the Licence.

- ‘Distribution’ or ‘Communication’: any act of selling, giving, lending,
 renting, distributing, communicating, transmitting, or otherwise making
 available, online or offline, copies of the Work or providing access to its
 essential functionalities at the disposal of any other natural or legal
 person.

2. Scope of the rights granted by the Licence

The Licensor hereby grants You a worldwide, royalty-free, non-exclusive,
sublicensable licence to do the following, for the duration of copyright vested
in the Original Work:

- use the Work in any circumstance and for all usage,
- reproduce the Work,
- modify the Work, and make Derivative Works based upon the Work,
- communicate to the public, including the right to make available or display
 the Work or copies thereof to the public and perform publicly, as the case may
 be, the Work,
- distribute the Work or copies thereof,
- lend and rent the Work or copies thereof,
- sublicense rights in the Work or copies thereof.

Those rights can be exercised on any media, supports and formats, whether now
known or later invented, as far as the applicable law permits so.

In the countries where moral rights apply, the Licensor waives his right to
exercise his moral right to the extent allowed by law in order to make effective
the licence of the economic rights here above listed.

The Licensor grants to the Licensee royalty-free, non-exclusive usage rights to
any patents held by the Licensor, to the extent necessary to make use of the
rights granted on the Work under this Licence.

3. Communication of the Source Code

The Licensor may provide the Work either in its Source Code form, or as
Executable Code. If the Work is provided as Executable Code, the Licensor
provides in addition a machine-readable copy of the Source Code of the Work
along with each copy of the Work that the Licensor distributes or indicates, in
a notice following the copyright notice attached to the Work, a repository where
the Source Code is easily and freely accessible for as long as the Licensor
continues to distribute or communicate the Work.

4. Limitations on copyright

Nothing in this Licence is intended to deprive the Licensee of the benefits from
any exception or limitation to the exclusive rights of the rights owners in the
Work, of the exhaustion of those rights or of other applicable limitations
thereto.

5. Obligations of the Licensee

The grant of the rights mentioned above is subject to some restrictions and
obligations imposed on the Licensee. Those obligations are the following:

Attribution right: The Licensee shall keep intact all copyright, patent or
trademarks notices and all notices that refer to the Licence and to the
disclaimer of warranties. The Licensee must include a copy of such notices and a
copy of the Licence with every copy of the Work he/she distributes or
communicates. The Licensee must cause any Derivative Work to carry prominent
notices stating that the Work has been modified and the date of modification.

Copyleft clause: If the Licensee distributes or communicates copies of the
Original Works or Derivative Works, this Distribution or Communication will be
done under the terms of this Licence or of a later version of this Licence
unless the Original Work is expressly distributed only under this version of the
Licence — for example by communicating ‘EUPL v. 1.2 only’. The Licensee
(becoming Licensor) cannot offer or impose any additional terms or conditions on
the Work or Derivative Work that alter or restrict the terms of the Licence.

Compatibility clause: If the Licensee Distributes or Communicates Derivative
Works or copies thereof based upon both the Work and another work licensed under
a Compatible Licence, this Distribution or Communication can be done under the
terms of this Compatible Licence. For the sake of this clause, ‘Compatible
Licence’ refers to the licences listed in the appendix attached to this Licence.
Should the Licensee's obligations under the Compatible Licence conflict with
his/her obligations under this Licence, the obligations of the Compatible
Licence shall prevail.

Provision of Source Code: When distributing or communicating copies of the Work,
the Licensee will provide a machine-readable copy of the Source Code or indicate
a repository where this Source will be easily and freely available for as long
as the Licensee continues to distribute or communicate the Work.

Legal Protection: This Licence does not grant permission to use the trade names,
trademarks, service marks, or names of the Licensor, except as required for
reasonable and customary use in describing the origin of the Work and
reproducing the content of the copyright notice.

6. Chain of Authorship

The original Licensor warrants that the copyright in the Original Work granted
hereunder is owned by him/her or licensed to him/her and that he/she has the
power and authority to grant the Licence.

Each Contributor warrants that the copyright in the modifications he/she brings
to the Work are owned by him/her or licensed to him/her and that he/she has the
power and authority to grant the Licence.

Each time You accept the Licence, the original Licensor and subsequent
Contributors grant You a licence to their contributions to the Work, under the
terms of this Licence.

7. Disclaimer of Warranty

The Work is a work in progress, which is continuously improved by numerous
Contributors. It is not a finished work and may therefore contain defects or
‘bugs’ inherent to this type of development.

For the above reason, the Work is provided under the Licence on an ‘as is’ basis
and without warranties of any kind concerning the Work, including without
limitation merchantability, fitness for a particular purpose, absence of defects
or errors, accuracy, non-infringement of intellectual property rights other than
copyright as stated in Article 6 of this Licence.

This disclaimer of warranty is an essential part of the Licence and a condition
for the grant of any rights to the Work.

8. Disclaimer of Liability

Except in the cases of wilful misconduct or damages directly caused to natural
persons, the Licensor will in no event be liable for any direct or indirect,
material or moral, damages of any kind, arising out of the Licence or of the use
of the Work, including without limitation, damages for loss of goodwill, work
stoppage, computer failure or malfunction, loss of data or any commercial
damage, even if the Licensor has been advised of the possibility of such damage.
However, the Licensor will be liable under statutory product liability laws as
far such laws apply to the Work.

9. Additional agreements

While distributing the Work, You may choose to conclude an additional agreement,
defining obligations or services consistent with this Licence. However, if
accepting obligations, You may act only on your own behalf and on your sole
responsibility, not on behalf of the original Licensor or any other Contributor,
and only if You agree to indemnify, defend, and hold each Contributor harmless
for any liability incurred by, or claims asserted against such Contributor by
the fact You have accepted any warranty or additional liability.

10. Acceptance of the Licence

The provisions of this Licence can be accepted by clicking on an icon ‘I agree’
placed under the bottom of a window displaying the text of this Licence or by
affirming consent in any other similar way, in accordance with the rules of
applicable law. Clicking on that icon indicates your clear and irrevocable
acceptance of this Licence and all of its terms and conditions.

Similarly, you irrevocably accept this Licence and all of its terms and
conditions by exercising any rights granted to You by Article 2 of this Licence,
such as the use of the Work, the creation by You of a Derivative Work or the
Distribution or Communication by You of the Work or copies thereof.

11. Information to the public

In case of any Distribution or Communication of the Work by means of electronic
communication by You (for example, by offering to download the Work from a
remote location) the distribution channel or media (for example, a website) must
at least provide to the public the information requested by the applicable law
regarding the Licensor, the Licence and the way it may be accessible, concluded,
stored and reproduced by the Licensee.

12. Termination of the Licence

The Licence and the rights granted hereunder will terminate automatically upon
any breach by the Licensee of the terms of the Licence.

Such a termination will not terminate the licences of any person who has
received the Work from the Licensee under the Licence, provided such persons
remain in full compliance with the Licence.

13. Miscellaneous

Without prejudice of Article 9 above, the Licence represents the complete
agreement between the Parties as to the Work.

If any provision of the Licence is invalid or unenforceable under applicable
law, this will not affect the validity or enforceability of the Licence as a
whole. Such provision will be construed or reformed so as necessary to make it
valid and enforceable.

The European Commission may publish other linguistic versions or new versions of
this Licence or updated versions of the Appendix, so far this is required and
reasonable, without reducing the scope of the rights granted by the Licence. New
versions of the Licence will be published with a unique version number.

All linguistic versions of this Licence, approved by the European Commission,
have identical value. Parties can take advantage of the linguistic version of
their choice.

14. Jurisdiction

Without prejudice to specific agreement between parties,

- any litigation resulting from the interpretation of this License, arising
 between the European Union institutions, bodies, offices or agencies, as a
 Licensor, and any Licensee, will be subject to the jurisdiction of the Court
 of Justice of the European Union, as laid down in article 272 of the Treaty on
 the Functioning of the European Union,

- any litigation arising between other parties and resulting from the
 interpretation of this License, will be subject to the exclusive jurisdiction
 of the competent court where the Licensor resides or conducts its primary
 business.

15. Applicable Law

Without prejudice to specific agreement between parties,

- this Licence shall be governed by the law of the European Union Member State
 where the Licensor has his seat, resides or has his registered office,

- this licence shall be governed by Belgian law if the Licensor has no seat,
 residence or registered office inside a European Union Member State.

Appendix

‘Compatible Licences’ according to Article 5 EUPL are:

- GNU General Public License (GPL) v. 2, v. 3
- GNU Affero General Public License (AGPL) v. 3
- Open Software License (OSL) v. 2.1, v. 3.0
- Eclipse Public License (EPL) v. 1.0
- CeCILL v. 2.0, v. 2.1
- Mozilla Public Licence (MPL) v. 2
- GNU Lesser General Public Licence (LGPL) v. 2.1, v. 3
- Creative Commons Attribution-ShareAlike v. 3.0 Unported (CC BY-SA 3.0) for
 works other than software
- European Union Public Licence (EUPL) v. 1.1, v. 1.2
- Québec Free and Open-Source Licence — Reciprocity (LiLiQ-R) or Strong
 Reciprocity (LiLiQ-R+).

The European Commission may update this Appendix to later versions of the above
licences without producing a new version of the EUPL, as long as they provide
the rights granted in Article 2 of this Licence and protect the covered Source
Code from exclusive appropriation.

All other changes or additions to this Appendix require the production of a new
EUPL version.

occluded-facedetection-performance/facerec/faceextractor.py

Licensed under the EUPL

from exceptions.NoFaceFoundError import NoFaceFoundError
from lib.align_trans import get_reference_facial_points, warp_and_crop_face

from mtcnn import MTCNN
import cv2
import numpy as np
import errno

class FaceExtractor:
 def __init__(self):
 self.reference = get_reference_facial_points(default_square=True)
 self.detector = MTCNN()

 def get_face_from_image(self, img):
 if img is None:
 raise TypeError()
 img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

 landmarks = self.detector.detect_faces(img)
 warped_faces = []
 if landmarks:
 for landmark in landmarks:
 kp = landmark["keypoints"]
 facial5points = [kp['left_eye'], kp['right_eye'], kp['nose'], kp["mouth_left"], kp["mouth_right"]]
 warped_face = warp_and_crop_face(np.array(img), facial5points, self.reference, crop_size=(112, 112))
 warped_faces.append(warped_face)
 return warped_faces
 else:
 raise NoFaceFoundError()

 def get_face_from_path(self, img_path):
 img = cv2.imread(img_path)
 if img is None:
 raise FileNotFoundError(errno.ENOENT, os.strerror(errno.ENOENT), img_path)
 return self.get_face_from_image(img)

 def get_landmarks_from_image(self, img):
 return self.detector.detect_faces(img)

 def get_landmarks_from_path(self, img_path):
 img = cv2.imread(img_path)
 img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
 return self.detector.detect_faces(img)

occluded-facedetection-performance/facerec/helper/imageprinter.py

Licensed under the EUPL

import math
from PIL import Image, ImageOps

class ImagePrinter:
 def __init__(self, cols=2, size=200):
 self.imgs = []
 self.cols = cols
 self.size = size

 def add_img_real(self, img):
 thumb = ImageOps.fit(img, (self.size, self.size), Image.ANTIALIAS)
 self.imgs.append(thumb)

 def add_img(self, path):
 im = Image.open(path)
 self.add_img_real(im)

 def get_img(self):
 rows = math.ceil(len(self.imgs) / self.cols)
 new_im = Image.new('RGB', (self.cols * self.size, rows * self.size))
 counter = 0
 for j in range(0, rows * self.size, self.size):
 for i in range(0, self.cols * self.size, self.size):
 if counter < len(self.imgs):
 new_im.paste(self.imgs[counter], (i, j))
 counter += 1
 return new_im

occluded-facedetection-performance/README.md

Face detection performance on occluded faces

Installation

- `python3 -m venv env`
- `source env/bin/activate`
- `pip3 install -r requirements.txt`
- [Download the CFP dataset](http://www.cfpw.io/)
- `python -m ipykernel install --user --name=env`
- In a jupyter notebook with the env-kernel go through `OccludedFaceDetection`

License

Licensed under the EUPL.

Acknowledgement
This work has been carried out within the scope of Digidow, the Christian Doppler Laboratory for Private Digital Authentication in the Physical World, funded by the Christian Doppler Forschungsgesellschaft, 3 Banken IT GmbH, Kepler Universitätsklinikum GmbH, NXP Semiconductors Austria GmbH, and Österreichische Staatsdruckerei GmbH and has partially been supported by the LIT Secure and Correct Systems Lab funded by the State of Upper Austria.

occluded-facedetection-performance/exceptions/NoFaceFoundError.py

Licensed under the EUPL

class NoFaceFoundError(Exception):
 pass

occluded-facedetection-performance/exceptions/__init__.py

occluded-facedetection-performance/lib/align_trans.py

"""MIT License

Copyright (c) 2019 Jian Zhao

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE."""

import numpy as np
import cv2
from lib.matlab_cp2tform import get_similarity_transform_for_cv2

reference facial points, a list of coordinates (x,y)
REFERENCE_FACIAL_POINTS = [# default reference facial points for crop_size = (112, 112); should adjust REFERENCE_FACIAL_POINTS accordingly for other crop_size
 [30.29459953, 51.69630051],
 [65.53179932, 51.50139999],
 [48.02519989, 71.73660278],
 [33.54930115, 92.3655014],
 [62.72990036, 92.20410156]
]

DEFAULT_CROP_SIZE = (96, 112)

class FaceWarpException(Exception):
 def __str__(self):
 return 'In File {}:{}'.format(
 __file__, super.__str__(self))

def get_reference_facial_points(output_size = None,
 inner_padding_factor = 0.0,
 outer_padding=(0, 0),
 default_square = False):
 """
 Function:

 get reference 5 key points according to crop settings:
 0. Set default crop_size:
 if default_square:
 crop_size = (112, 112)
 else:
 crop_size = (96, 112)
 1. Pad the crop_size by inner_padding_factor in each side;
 2. Resize crop_size into (output_size - outer_padding*2),
 pad into output_size with outer_padding;
 3. Output reference_5point;
 Parameters:

 @output_size: (w, h) or None
 size of aligned face image
 @inner_padding_factor: (w_factor, h_factor)
 padding factor for inner (w, h)
 @outer_padding: (w_pad, h_pad)
 each row is a pair of coordinates (x, y)
 @default_square: True or False
 if True:
 default crop_size = (112, 112)
 else:
 default crop_size = (96, 112);
 !!! make sure, if output_size is not None:
 (output_size - outer_padding)
 = some_scale * (default crop_size * (1.0 + inner_padding_factor))
 Returns:

 @reference_5point: 5x2 np.array
 each row is a pair of transformed coordinates (x, y)
 """
 #print('\n===> get_reference_facial_points():')

 #print('---> Params:')
 #print(' output_size: ', output_size)
 #print(' inner_padding_factor: ', inner_padding_factor)
 #print(' outer_padding:', outer_padding)
 #print(' default_square: ', default_square)

 tmp_5pts = np.array(REFERENCE_FACIAL_POINTS)
 tmp_crop_size = np.array(DEFAULT_CROP_SIZE)

 # 0) make the inner region a square
 if default_square:
 size_diff = max(tmp_crop_size) - tmp_crop_size
 tmp_5pts += size_diff / 2
 tmp_crop_size += size_diff

 #print('---> default:')
 #print(' crop_size = ', tmp_crop_size)
 #print(' reference_5pts = ', tmp_5pts)

 if (output_size and
 output_size[0] == tmp_crop_size[0] and
 output_size[1] == tmp_crop_size[1]):
 #print('output_size == DEFAULT_CROP_SIZE {}: return default reference points'.format(tmp_crop_size))
 return tmp_5pts

 if (inner_padding_factor == 0 and
 outer_padding == (0, 0)):
 if output_size is None:
 #print('No paddings to do: return default reference points')
 return tmp_5pts
 else:
 raise FaceWarpException(
 'No paddings to do, output_size must be None or {}'.format(tmp_crop_size))

 # check output size
 if not (0 <= inner_padding_factor <= 1.0):
 raise FaceWarpException('Not (0 <= inner_padding_factor <= 1.0)')

 if ((inner_padding_factor > 0 or outer_padding[0] > 0 or outer_padding[1] > 0)
 and output_size is None):
 output_size = tmp_crop_size * \
 (1 + inner_padding_factor * 2).astype(np.int32)
 output_size += np.array(outer_padding)
 #print(' deduced from paddings, output_size = ', output_size)

 if not (outer_padding[0] < output_size[0]
 and outer_padding[1] < output_size[1]):
 raise FaceWarpException('Not (outer_padding[0] < output_size[0]'
 'and outer_padding[1] < output_size[1])')

 # 1) pad the inner region according inner_padding_factor
 #print('---> STEP1: pad the inner region according inner_padding_factor')
 if inner_padding_factor > 0:
 size_diff = tmp_crop_size * inner_padding_factor * 2
 tmp_5pts += size_diff / 2
 tmp_crop_size += np.round(size_diff).astype(np.int32)

 #print(' crop_size = ', tmp_crop_size)
 #print(' reference_5pts = ', tmp_5pts)

 # 2) resize the padded inner region
 #print('---> STEP2: resize the padded inner region')
 size_bf_outer_pad = np.array(output_size) - np.array(outer_padding) * 2
 #print(' crop_size = ', tmp_crop_size)
 #print(' size_bf_outer_pad = ', size_bf_outer_pad)

 if size_bf_outer_pad[0] * tmp_crop_size[1] != size_bf_outer_pad[1] * tmp_crop_size[0]:
 raise FaceWarpException('Must have (output_size - outer_padding)'
 '= some_scale * (crop_size * (1.0 + inner_padding_factor)')

 scale_factor = size_bf_outer_pad[0].astype(np.float32) / tmp_crop_size[0]
 #print(' resize scale_factor = ', scale_factor)
 tmp_5pts = tmp_5pts * scale_factor
size_diff = tmp_crop_size * (scale_factor - min(scale_factor))
tmp_5pts = tmp_5pts + size_diff / 2
 tmp_crop_size = size_bf_outer_pad
 #print(' crop_size = ', tmp_crop_size)
 #print(' reference_5pts = ', tmp_5pts)

 # 3) add outer_padding to make output_size
 reference_5point = tmp_5pts + np.array(outer_padding)
 tmp_crop_size = output_size
 #print('---> STEP3: add outer_padding to make output_size')
 #print(' crop_size = ', tmp_crop_size)
 #print(' reference_5pts = ', tmp_5pts)

 #print('===> end get_reference_facial_points\n')

 return reference_5point

def get_affine_transform_matrix(src_pts, dst_pts):
 """
 Function:

 get affine transform matrix 'tfm' from src_pts to dst_pts
 Parameters:

 @src_pts: Kx2 np.array
 source points matrix, each row is a pair of coordinates (x, y)
 @dst_pts: Kx2 np.array
 destination points matrix, each row is a pair of coordinates (x, y)
 Returns:

 @tfm: 2x3 np.array
 transform matrix from src_pts to dst_pts
 """

 tfm = np.float32([[1, 0, 0], [0, 1, 0]])
 n_pts = src_pts.shape[0]
 ones = np.ones((n_pts, 1), src_pts.dtype)
 src_pts_ = np.hstack([src_pts, ones])
 dst_pts_ = np.hstack([dst_pts, ones])

#print(('src_pts_:\n' + str(src_pts_))
#print(('dst_pts_:\n' + str(dst_pts_))

 A, res, rank, s = np.linalg.lstsq(src_pts_, dst_pts_)

#print(('np.linalg.lstsq return A: \n' + str(A))
#print(('np.linalg.lstsq return res: \n' + str(res))
#print(('np.linalg.lstsq return rank: \n' + str(rank))
#print(('np.linalg.lstsq return s: \n' + str(s))

 if rank == 3:
 tfm = np.float32([
 [A[0, 0], A[1, 0], A[2, 0]],
 [A[0, 1], A[1, 1], A[2, 1]]
])
 elif rank == 2:
 tfm = np.float32([
 [A[0, 0], A[1, 0], 0],
 [A[0, 1], A[1, 1], 0]
])

 return tfm

def warp_and_crop_face(src_img,
 facial_pts,
 reference_pts = None,
 crop_size=(96, 112),
 align_type = 'smilarity'):
 """
 Function:

 apply affine transform 'trans' to uv
 Parameters:

 @src_img: 3x3 np.array
 input image
 @facial_pts: could be
 1)a list of K coordinates (x,y)
 or
 2) Kx2 or 2xK np.array
 each row or col is a pair of coordinates (x, y)
 @reference_pts: could be
 1) a list of K coordinates (x,y)
 or
 2) Kx2 or 2xK np.array
 each row or col is a pair of coordinates (x, y)
 or
 3) None
 if None, use default reference facial points
 @crop_size: (w, h)
 output face image size
 @align_type: transform type, could be one of
 1) 'similarity': use similarity transform
 2) 'cv2_affine': use the first 3 points to do affine transform,
 by calling cv2.getAffineTransform()
 3) 'affine': use all points to do affine transform
 Returns:

 @face_img: output face image with size (w, h) = @crop_size
 """

 if reference_pts is None:
 if crop_size[0] == 96 and crop_size[1] == 112:
 reference_pts = REFERENCE_FACIAL_POINTS
 else:
 default_square = False
 inner_padding_factor = 0
 outer_padding = (0, 0)
 output_size = crop_size

 reference_pts = get_reference_facial_points(output_size,
 inner_padding_factor,
 outer_padding,
 default_square)

 ref_pts = np.float32(reference_pts)
 ref_pts_shp = ref_pts.shape
 if max(ref_pts_shp) < 3 or min(ref_pts_shp) != 2:
 raise FaceWarpException(
 'reference_pts.shape must be (K,2) or (2,K) and K>2')

 if ref_pts_shp[0] == 2:
 ref_pts = ref_pts.T

 src_pts = np.float32(facial_pts)
 src_pts_shp = src_pts.shape
 if max(src_pts_shp) < 3 or min(src_pts_shp) != 2:
 raise FaceWarpException(
 'facial_pts.shape must be (K,2) or (2,K) and K>2')

 if src_pts_shp[0] == 2:
 src_pts = src_pts.T

#print('--->src_pts:\n', src_pts
#print('--->ref_pts\n', ref_pts

 if src_pts.shape != ref_pts.shape:
 raise FaceWarpException(
 'facial_pts and reference_pts must have the same shape')

 if align_type == 'cv2_affine':
 tfm = cv2.getAffineTransform(src_pts[0:3], ref_pts[0:3])
#print(('cv2.getAffineTransform() returns tfm=\n' + str(tfm))
 elif align_type == 'affine':
 tfm = get_affine_transform_matrix(src_pts, ref_pts)
#print(('get_affine_transform_matrix() returns tfm=\n' + str(tfm))
 else:
 tfm = get_similarity_transform_for_cv2(src_pts, ref_pts)
#print(('get_similarity_transform_for_cv2() returns tfm=\n' + str(tfm))

#print('--->Transform matrix: '
#print(('type(tfm):' + str(type(tfm)))
#print(('tfm.dtype:' + str(tfm.dtype))
#print(tfm

 face_img = cv2.warpAffine(src_img, tfm, (crop_size[0], crop_size[1]))

 return face_img

occluded-facedetection-performance/lib/matlab_cp2tform.py

"""
MIT License

Copyright (c) 2019 Jian Zhao

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""

import numpy as np
from numpy.linalg import inv, norm, lstsq
from numpy.linalg import matrix_rank as rank

class MatlabCp2tormException(Exception):
 def __str__(self):
 return "In File {}:{}".format(
 __file__, super.__str__(self))

def tformfwd(trans, uv):
 """
 Function:

 apply affine transform 'trans' to uv

 Parameters:

 @trans: 3x3 np.array
 transform matrix
 @uv: Kx2 np.array
 each row is a pair of coordinates (x, y)

 Returns:

 @xy: Kx2 np.array
 each row is a pair of transformed coordinates (x, y)
 """
 uv = np.hstack((
 uv, np.ones((uv.shape[0], 1))
))
 xy = np.dot(uv, trans)
 xy = xy[:, 0:-1]
 return xy

def tforminv(trans, uv):
 """
 Function:

 apply the inverse of affine transform 'trans' to uv

 Parameters:

 @trans: 3x3 np.array
 transform matrix
 @uv: Kx2 np.array
 each row is a pair of coordinates (x, y)

 Returns:

 @xy: Kx2 np.array
 each row is a pair of inverse-transformed coordinates (x, y)
 """
 Tinv = inv(trans)
 xy = tformfwd(Tinv, uv)
 return xy

def findNonreflectiveSimilarity(uv, xy, options=None):

 options = {'K': 2}

 K = options['K']
 M = xy.shape[0]
 x = xy[:, 0].reshape((-1, 1)) # use reshape to keep a column vector
 y = xy[:, 1].reshape((-1, 1)) # use reshape to keep a column vector
 # print('--->x, y:\n', x, y

 tmp1 = np.hstack((x, y, np.ones((M, 1)), np.zeros((M, 1))))
 tmp2 = np.hstack((y, -x, np.zeros((M, 1)), np.ones((M, 1))))
 X = np.vstack((tmp1, tmp2))
 # print('--->X.shape: ', X.shape
 # print('X:\n', X

 u = uv[:, 0].reshape((-1, 1)) # use reshape to keep a column vector
 v = uv[:, 1].reshape((-1, 1)) # use reshape to keep a column vector
 U = np.vstack((u, v))
 # print('--->U.shape: ', U.shape
 # print('U:\n', U

 # We know that X * r = U
 if rank(X) >= 2 * K:
 r, _, _, _ = lstsq(X, U)
 r = np.squeeze(r)
 else:
 raise Exception("cp2tform: two Unique Points Req")

 # print('--->r:\n', r

 sc = r[0]
 ss = r[1]
 tx = r[2]
 ty = r[3]

 Tinv = np.array([
 [sc, -ss, 0],
 [ss, sc, 0],
 [tx, ty, 1]
])

 # print('--->Tinv:\n', Tinv

 T = inv(Tinv)
 # print('--->T:\n', T

 T[:, 2] = np.array([0, 0, 1])

 return T, Tinv

def findSimilarity(uv, xy, options=None):

 options = {'K': 2}

uv = np.array(uv)
xy = np.array(xy)

 # Solve for trans1
 trans1, trans1_inv = findNonreflectiveSimilarity(uv, xy, options)

 # Solve for trans2

 # manually reflect the xy data across the Y-axis
 xyR = xy
 xyR[:, 0] = -1 * xyR[:, 0]

 trans2r, trans2r_inv = findNonreflectiveSimilarity(uv, xyR, options)

 # manually reflect the tform to undo the reflection done on xyR
 TreflectY = np.array([
 [-1, 0, 0],
 [0, 1, 0],
 [0, 0, 1]
])

 trans2 = np.dot(trans2r, TreflectY)

 # Figure out if trans1 or trans2 is better
 xy1 = tformfwd(trans1, uv)
 norm1 = norm(xy1 - xy)

 xy2 = tformfwd(trans2, uv)
 norm2 = norm(xy2 - xy)

 if norm1 <= norm2:
 return trans1, trans1_inv
 else:
 trans2_inv = inv(trans2)
 return trans2, trans2_inv

def get_similarity_transform(src_pts, dst_pts, reflective = True):
 """
 Function:

 Find Similarity Transform Matrix 'trans':
 u = src_pts[:, 0]
 v = src_pts[:, 1]
 x = dst_pts[:, 0]
 y = dst_pts[:, 1]
 [x, y, 1] = [u, v, 1] * trans

 Parameters:

 @src_pts: Kx2 np.array
 source points, each row is a pair of coordinates (x, y)
 @dst_pts: Kx2 np.array
 destination points, each row is a pair of transformed
 coordinates (x, y)
 @reflective: True or False
 if True:
 use reflective similarity transform
 else:
 use non-reflective similarity transform

 Returns:

 @trans: 3x3 np.array
 transform matrix from uv to xy
 trans_inv: 3x3 np.array
 inverse of trans, transform matrix from xy to uv
 """

 if reflective:
 trans, trans_inv = findSimilarity(src_pts, dst_pts)
 else:
 trans, trans_inv = findNonreflectiveSimilarity(src_pts, dst_pts)

 return trans, trans_inv

def cvt_tform_mat_for_cv2(trans):
 """
 Function:

 Convert Transform Matrix 'trans' into 'cv2_trans' which could be
 directly used by cv2.warpAffine():
 u = src_pts[:, 0]
 v = src_pts[:, 1]
 x = dst_pts[:, 0]
 y = dst_pts[:, 1]
 [x, y].T = cv_trans * [u, v, 1].T

 Parameters:

 @trans: 3x3 np.array
 transform matrix from uv to xy

 Returns:

 @cv2_trans: 2x3 np.array
 transform matrix from src_pts to dst_pts, could be directly used
 for cv2.warpAffine()
 """
 cv2_trans = trans[:, 0:2].T

 return cv2_trans

def get_similarity_transform_for_cv2(src_pts, dst_pts, reflective = True):
 """
 Function:

 Find Similarity Transform Matrix 'cv2_trans' which could be
 directly used by cv2.warpAffine():
 u = src_pts[:, 0]
 v = src_pts[:, 1]
 x = dst_pts[:, 0]
 y = dst_pts[:, 1]
 [x, y].T = cv_trans * [u, v, 1].T

 Parameters:

 @src_pts: Kx2 np.array
 source points, each row is a pair of coordinates (x, y)
 @dst_pts: Kx2 np.array
 destination points, each row is a pair of transformed
 coordinates (x, y)
 reflective: True or False
 if True:
 use reflective similarity transform
 else:
 use non-reflective similarity transform

 Returns:

 @cv2_trans: 2x3 np.array
 transform matrix from src_pts to dst_pts, could be directly used
 for cv2.warpAffine()
 """
 trans, trans_inv = get_similarity_transform(src_pts, dst_pts, reflective)
 cv2_trans = cvt_tform_mat_for_cv2(trans)

 return cv2_trans

if __name__ == '__main__':
 """
 u = [0, 6, -2]
 v = [0, 3, 5]
 x = [-1, 0, 4]
 y = [-1, -10, 4]

 # In Matlab, run:
 #
 # uv = [u'; v'];
 # xy = [x'; y'];
 # tform_sim=cp2tform(uv,xy,'similarity');
 #
 # trans = tform_sim.tdata.T
 # ans =
 # -0.0764 -1.6190 0
 # 1.6190 -0.0764 0
 # -3.2156 0.0290 1.0000
 # trans_inv = tform_sim.tdata.Tinv
 # ans =
 #
 # -0.0291 0.6163 0
 # -0.6163 -0.0291 0
 # -0.0756 1.9826 1.0000
 # xy_m=tformfwd(tform_sim, u,v)
 #
 # xy_m =
 #
 # -3.2156 0.0290
 # 1.1833 -9.9143
 # 5.0323 2.8853
 # uv_m=tforminv(tform_sim, x,y)
 #
 # uv_m =
 #
 # 0.5698 1.3953
 # 6.0872 2.2733
 # -2.6570 4.3314
 """
 u = [0, 6, -2]
 v = [0, 3, 5]
 x = [-1, 0, 4]
 y = [-1, -10, 4]

 uv = np.array((u, v)).T
 xy = np.array((x, y)).T

 print("\n--->uv:")
 print(uv)
 print("\n--->xy:")
 print(xy)

 trans, trans_inv = get_similarity_transform(uv, xy)

 print("\n--->trans matrix:")
 print(trans)

 print("\n--->trans_inv matrix:")
 print(trans_inv)

 print("\n---> apply transform to uv")
 print("\nxy_m = uv_augmented * trans")
 uv_aug = np.hstack((
 uv, np.ones((uv.shape[0], 1))
))
 xy_m = np.dot(uv_aug, trans)
 print(xy_m)

 print("\nxy_m = tformfwd(trans, uv)")
 xy_m = tformfwd(trans, uv)
 print(xy_m)

 print("\n---> apply inverse transform to xy")
 print("\nuv_m = xy_augmented * trans_inv")
 xy_aug = np.hstack((
 xy, np.ones((xy.shape[0], 1))
))
 uv_m = np.dot(xy_aug, trans_inv)
 print(uv_m)

 print("\nuv_m = tformfwd(trans_inv, xy)")
 uv_m = tformfwd(trans_inv, xy)
 print(uv_m)

 uv_m = tforminv(trans, xy)
 print("\nuv_m = tforminv(trans, xy)")
 print(uv_m)

occluded-facedetection-performance/detectionalgorithms/MyMTCNN.py

Licensed under the EUPL.

from mtcnn import MTCNN
import cv2
from FacedetectionInterface import FacedetectionInterface

class MyMTCNN(FacedetectionInterface):
 def __init__(self):
 super().__init__()

 self.detector = MTCNN()

 def get_amount_faces_from_img(self, cv2_img) -> int:
 result = self.detector.detect_faces(cv2_img)
 return(len(result))

 def __str__(self):
 return "mtcnn"

occluded-facedetection-performance/detectionalgorithms/MyRetinaFace.py

Licensed under the EUPL.

from face_detection import RetinaFace
from FacedetectionInterface import FacedetectionInterface

class MyRetinaFace(FacedetectionInterface):
 def __init__(self):
 super().__init__()

 self.detector = RetinaFace()

 def get_amount_faces_from_img(self, cv2_img) -> int:
 result = self.detector(cv2_img)
 amount_detected_faces = 0
 for r in result:
 if r[2] > 0.95:
 amount_detected_faces += 1
 return(amount_detected_faces)

 def __str__(self):
 return "retinaface"

occluded-facedetection-performance/detectionalgorithms/MyDLIB.py

Licensed under the EUPL.

from FacedetectionInterface import FacedetectionInterface
import face_recognition

class MyDLIB(FacedetectionInterface):
 def __init__(self):
 super().__init__()

 def get_amount_faces_from_img(self, cv2_img) -> int:
 face_locations = face_recognition.face_locations(cv2_img)
 return(len(face_locations))

 def __str__(self):
 return "dlib"

occluded-facedetection-performance/datasets/afdb.py

Licensed under the EUPL.

from FacedatasetInterface import FacedatasetInterface
import os

class AFDB(FacedatasetInterface):
 def __init__(self, path):
 self.path=path
 self.img_paths = []
 self.get_paths()

 def get_paths(self):
 for person_id in os.listdir(self.path):
 person_imgs_path = os.path.join(self.path, person_id)
 for person_img_path in os.listdir(person_imgs_path):
 self.img_paths.append(os.path.join(person_imgs_path, person_img_path))

occluded-facedetection-performance/datasets/CFPprofile.py

Licensed under the EUPL.

from FacedatasetInterface import FacedatasetInterface
import os

class CFPProfile(FacedatasetInterface):
 def __init__(self, path):
 self.path=path # Path to folder which contains the 'Data' folder of the CFP dataset.
 self.img_paths = []
 self.get_paths()

 def get_paths(self):
 person_id_path = os.path.join(self.path, "Data/Images")
 for person_id in os.listdir(person_id_path):
 person_imgs_path = os.path.join(person_id_path, person_id+"/profile")
 for person_img_path in os.listdir(person_imgs_path):
 self.img_paths.append(os.path.join(person_imgs_path, person_img_path))

occluded-facedetection-performance/datasets/CFPfrontal.py

Licensed under the EUPL.

from FacedatasetInterface import FacedatasetInterface
import os

class CFPFrontal(FacedatasetInterface):
 def __init__(self, path):
 self.path=path # Path to folder which contains the 'Data' folder of the CFP dataset.
 self.img_paths = []
 self.get_paths()

 def get_paths(self):
 person_id_path = os.path.join(self.path, "Data/Images")
 for person_id in os.listdir(person_id_path):
 person_imgs_path = os.path.join(person_id_path, person_id+"/frontal")
 for person_img_path in os.listdir(person_imgs_path):
 self.img_paths.append(os.path.join(person_imgs_path, person_img_path))

occluded-facedetection-performance/datasets/ImageFolder.py

Licensed under the EUPL.

from FacedatasetInterface import FacedatasetInterface
import os

class ImageFolder(FacedatasetInterface):
 def __init__(self, path):
 self.path=path
 self.img_paths = []
 self.get_paths()

 def get_paths(self):
 for img_file in os.listdir(self.path):
 self.img_paths.append(os.path.join(self.path, img_file))

occluded-facedetection-performance/FaceAnalysis.py

Licensed under the EUPL.

from tqdm import tqdm
from shutil import copyfile
import shutil
import ntpath
import os
import time

class FaceAnalysis:
 def __init__(self, algorithm, dataset):
 self.algorithm = algorithm
 self.dataset = dataset
 self.errors = dict()
 self.amount_correct = 0

 def calcAcc(self, copy_file_to_downloads_folder=False, path_to_wrong_detections="~/Downloads/wrong/", path_to_correct_detections="~/Downloads/correct/"):
 if copy_file_to_downloads_folder:
 if os.path.isdir(path_to_wrong_detections):
 shutil.rmtree(path_to_wrong_detections)
 if os.path.isdir(path_to_correct_detections):
 shutil.rmtree(path_to_correct_detections)
 os.makedirs(path_to_wrong_detections)
 os.makedirs(path_to_correct_detections)
 imgs = self.dataset.get_paths_to_imgs()
 start = time.time()
 for img in tqdm(imgs):
 if self.algorithm.has_one_face(img):
 self.amount_correct += 1
 if copy_file_to_downloads_folder:
 copyfile(img, os.path.join(path_to_correct_detections,img.replace("/","_")))
 else:
 amount_faces_detected = str(self.algorithm.get_amount_faces_from_path(img))
 if amount_faces_detected in self.errors:
 self.errors[amount_faces_detected] += 1
 else:
 self.errors[amount_faces_detected] = 1

 if copy_file_to_downloads_folder:
 copyfile(img, os.path.join(path_to_wrong_detections,amount_faces_detected+"_"+img.replace("/","_")))
 self.elapsed_time = time.time()-start

 def get_amount_for(self, n):
 try:
 return self.errors[n]
 except:
 return 0

 def get_more_than_two(self):
 ret = 0
 for error in self.errors:
 if error not in ["0","2"]:
 ret += self.errors[error]
 return ret

 def write_to_result_file(self):
 with open("/home/user/result.txt", "a") as myfile:
 myfile.write("{};{};{};{};{};{};{}\n".format(self.dataset.path, str(self.algorithm), self.amount_correct, self.get_amount_for("0"), self.get_amount_for("2"), self.get_more_than_two(), self.elapsed_time))

 def __str__(self):
 ret = "{} images successfully detected.\n".format(self.amount_correct)
 for error in self.errors:
 ret += "In {} images {} face(s) have been found\n".format(self.errors[error], error)
 ret += "Computation time: {}s".format(self.elapsed_time)
 return ret

occluded-facedetection-performance/OccludedFaceDetection.ipynb

{
 "cells": [
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "Licensed under the EUPL."
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# DatasetModifier\n",
 "This will modify the [CFP](http://www.cfpw.io/) dataset in order to verify which part of the face is most important for face detection."
]
 },
 {
 "cell_type": "code",
 "execution_count": 1,
 "metadata": {},
 "outputs": [],
 "source": [
 "%load_ext autoreload\n",
 "%autoreload 2"
]
 },
 {
 "cell_type": "code",
 "execution_count": 1,
 "metadata": {},
 "outputs": [],
 "source": [
 "from facerec.faceextractor import FaceExtractor\n",
 "from FaceAnalysis import FaceAnalysis\n",
 "\n",
 "from detectionalgorithms.MyMTCNN import MyMTCNN\n",
 "from detectionalgorithms.MyRetinaFace import MyRetinaFace\n",
 "from detectionalgorithms.MyDLIB import MyDLIB\n",
 "\n",
 "from datasets.CFPfrontal import CFPFrontal\n",
 "from datasets.CFPprofile import CFPProfile\n",
 "from datasets.ImageFolder import ImageFolder\n",
 "from datasets.afdb import AFDB\n",
 "\n",
 "\n",
 "from pathlib import Path\n",
 "import numpy as np\n",
 "from tqdm import tqdm\n",
 "import cv2\n",
 "from PIL import Image"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "Instantiate the three face detection algorithms which are analyzed."
]
 },
 {
 "cell_type": "code",
 "execution_count": 2,
 "metadata": {},
 "outputs": [],
 "source": [
 "extractor = FaceExtractor()\n",
 "mt = MyMTCNN()\n",
 "rf = MyRetinaFace()\n",
 "dl = MyDLIB()\n",
 "\n",
 "path=\"/home/philipp/Downloads/\" # Path which contains 'cfp-dataset'"
]
 },
 {
 "cell_type": "code",
 "execution_count": 5,
 "metadata": {},
 "outputs": [],
 "source": [
 "def analyze(path):\n",
 " dataset = ImageFolder(path)\n",
 " \n",
 " print(\"=== {} ===\".format(path))\n",
 " analysis = FaceAnalysis(mt,dataset)\n",
 " analysis.calcAcc(copy_file_to_downloads_folder=False)\n",
 " print(\"= MTCNN =\")\n",
 " print(analysis)\n",
 "\n",
 " analysis = FaceAnalysis(rf,dataset)\n",
 " analysis.calcAcc(copy_file_to_downloads_folder=False)\n",
 " print(\"= RETINAFACE =\")\n",
 " print(analysis)\n",
 "\n",
 " analysis = FaceAnalysis(dl,dataset)\n",
 " analysis.calcAcc(copy_file_to_downloads_folder=False)\n",
 " print(\"= DLIB =\")\n",
 " print(analysis)"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "name = \"cfp-no-eyes-perc\"\n",
 "original_path=os.path.join(path,\"cfp-dataset/Data/Images\")\n",
 "new_path=os.path.join(path,name+\"/Data/Images\")\n",
 "for person_nr in tqdm(os.listdir(original_path)):\n",
 " frontal_path = os.path.join(original_path, person_nr, \"frontal\")\n",
 " Path(os.path.join(new_path, person_nr, \"frontal\")).mkdir(parents=True, exist_ok=True)\n",
 " for img_nr in os.listdir(frontal_path):\n",
 " img_path = os.path.join(frontal_path, img_nr)\n",
 " img = cv2.imread(img_path)\n",
 " img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)\n",
 " landmarks = extractor.get_landmarks_from_path(img_path)\n",
 " if len(landmarks) == 1:\n",
 " left_eye = landmarks[0][\"keypoints\"][\"left_eye\"][1]\n",
 " right_eye = landmarks[0][\"keypoints\"][\"right_eye\"][1]\n",
 "\n",
 " min_eye = min(left_eye,right_eye)\n",
 " max_eye = max(left_eye,right_eye)\n",
 " img[int(min_eye-img.shape[0]/10):int(max_eye+img.shape[0]/10), :, :] = 0\n",
 " img_to_print = Image.fromarray(img.astype(np.uint8))\n",
 " new_path_img = os.path.join(new_path, person_nr, \"frontal\", img_nr)\n",
 " img_to_print.save(new_path_img)\n",
 " else:\n",
 " pass\n",
 " #print(\"{} has {} faces\".format(img_path, len(landmarks)))\n",
 " \n",
 "print_results(name)"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "name = \"cfp-no-eyes-fixed\"\n",
 "original_path=os.path.join(path,\"cfp-dataset/Data/Images\")\n",
 "new_path=os.path.join(path,name+\"/Data/Images\")\n",
 "for person_nr in tqdm(os.listdir(original_path)):\n",
 " frontal_path = os.path.join(original_path, person_nr, \"frontal\")\n",
 " Path(os.path.join(new_path, person_nr, \"frontal\")).mkdir(parents=True, exist_ok=True)\n",
 " for img_nr in os.listdir(frontal_path):\n",
 " img_path = os.path.join(frontal_path, img_nr)\n",
 " img = cv2.imread(img_path)\n",
 " img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)\n",
 " landmarks = extractor.get_landmarks_from_path(img_path)\n",
 " if len(landmarks) == 1:\n",
 " left_eye = landmarks[0][\"keypoints\"][\"left_eye\"][1]\n",
 " right_eye = landmarks[0][\"keypoints\"][\"right_eye\"][1]\n",
 "\n",
 " min_eye = min(left_eye,right_eye)\n",
 " max_eye = max(left_eye,right_eye)\n",
 " img[int(min_eye-5):int(max_eye+5), :, :] = 0\n",
 " \n",
 " \n",
 " img_to_print = Image.fromarray(img.astype(np.uint8))\n",
 " new_path_img = os.path.join(new_path, person_nr, \"frontal\", img_nr)\n",
 " img_to_print.save(new_path_img)\n",
 " else:\n",
 " pass\n",
 " #print(\"{} has {} faces\".format(img_path, len(landmarks)))\n",
 " \n",
 "print_results(name)"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "name = \"cfp-no-eyes-rectangle\"\n",
 "original_path=os.path.join(path,\"cfp-dataset/Data/Images\")\n",
 "new_path=os.path.join(path,name+\"/Data/Images\")\n",
 "for person_nr in tqdm(os.listdir(original_path)):\n",
 " frontal_path = os.path.join(original_path, person_nr, \"frontal\")\n",
 " Path(os.path.join(new_path, person_nr, \"frontal\")).mkdir(parents=True, exist_ok=True)\n",
 " for img_nr in os.listdir(frontal_path):\n",
 " img_path = os.path.join(frontal_path, img_nr)\n",
 " img = cv2.imread(img_path)\n",
 " img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)\n",
 " landmarks = extractor.get_landmarks_from_path(img_path)\n",
 " if len(landmarks) == 1:\n",
 " left=landmarks[0][\"keypoints\"][\"left_eye\"]\n",
 " right=landmarks[0][\"keypoints\"][\"right_eye\"]\n",
 "\n",
 " width=int(abs(right[0]-left[0])/10)\n",
 " img[left[1]-width:left[1]+width, left[0]-width*3:left[0]+width*3, :] = 0\n",
 " img[right[1]-width:right[1]+width, right[0]-width*3:right[0]+width*3, :] = 0\n",
 " \n",
 " \n",
 " img_to_print = Image.fromarray(img.astype(np.uint8))\n",
 " new_path_img = os.path.join(new_path, person_nr, \"frontal\", img_nr)\n",
 " img_to_print.save(new_path_img)\n",
 " else:\n",
 " pass\n",
 " #print(\"{} has {} faces\".format(img_path, len(landmarks)))\n",
 " \n",
 "print_results(name)"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "name = \"cfp-top-half-only\"\n",
 "original_path=os.path.join(path,\"cfp-dataset/Data/Images\")\n",
 "new_path=os.path.join(path,name+\"/Data/Images\")\n",
 "for person_nr in tqdm(os.listdir(original_path)):\n",
 " frontal_path = os.path.join(original_path, person_nr, \"frontal\")\n",
 " Path(os.path.join(new_path, person_nr, \"frontal\")).mkdir(parents=True, exist_ok=True)\n",
 " for img_nr in os.listdir(frontal_path):\n",
 " img_path = os.path.join(frontal_path, img_nr)\n",
 " img = cv2.imread(img_path)\n",
 " img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)\n",
 " landmarks = extractor.get_landmarks_from_path(img_path)\n",
 " if len(landmarks) == 1:\n",
 " landmarks = landmarks[0]\n",
 " nose = landmarks[\"keypoints\"][\"nose\"]\n",
 " img[int(nose[1]+nose[1]/20):, :, :] = 0\n",
 " \n",
 " \n",
 " img_to_print = Image.fromarray(img.astype(np.uint8))\n",
 " new_path_img = os.path.join(new_path, person_nr, \"frontal\", img_nr)\n",
 " img_to_print.save(new_path_img)\n",
 " else:\n",
 " pass\n",
 " #print(\"{} has {} faces\".format(img_path, len(landmarks)))\n",
 " \n",
 "print_results(name)"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "name = \"cfp-top-half-only-mask\"\n",
 "original_path=os.path.join(path,\"cfp-dataset/Data/Images\")\n",
 "new_path=os.path.join(path,name+\"/Data/Images\")\n",
 "for person_nr in tqdm(os.listdir(original_path)):\n",
 " frontal_path = os.path.join(original_path, person_nr, \"frontal\")\n",
 " Path(os.path.join(new_path, person_nr, \"frontal\")).mkdir(parents=True, exist_ok=True)\n",
 " for img_nr in os.listdir(frontal_path):\n",
 " img_path = os.path.join(frontal_path, img_nr)\n",
 " img = cv2.imread(img_path)\n",
 " img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)\n",
 " landmarks = extractor.get_landmarks_from_path(img_path)\n",
 " if len(landmarks) == 1:\n",
 " left_eye = landmarks[0][\"keypoints\"][\"left_eye\"][1]\n",
 " right_eye = landmarks[0][\"keypoints\"][\"right_eye\"][1]\n",
 " min_eye = max(left_eye,right_eye)\n",
 " nose = landmarks[0][\"keypoints\"][\"nose\"][1]\n",
 " middle = int((nose+min_eye)/2)\n",
 " img[middle:, :, :] = 0\n",
 " \n",
 " \n",
 " img_to_print = Image.fromarray(img.astype(np.uint8))\n",
 " new_path_img = os.path.join(new_path, person_nr, \"frontal\", img_nr)\n",
 " img_to_print.save(new_path_img)\n",
 " else:\n",
 " pass\n",
 " #print(\"{} has {} faces\".format(img_path, len(landmarks)))\n",
 " \n",
 "print_results(name)"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "name = \"cfp-no-top\"\n",
 "original_path=os.path.join(path,\"cfp-dataset/Data/Images\")\n",
 "new_path=os.path.join(path,name+\"/Data/Images\")\n",
 "for person_nr in tqdm(os.listdir(original_path)):\n",
 " frontal_path = os.path.join(original_path, person_nr, \"frontal\")\n",
 " Path(os.path.join(new_path, person_nr, \"frontal\")).mkdir(parents=True, exist_ok=True)\n",
 " for img_nr in os.listdir(frontal_path):\n",
 " img_path = os.path.join(frontal_path, img_nr)\n",
 " img = cv2.imread(img_path)\n",
 " img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)\n",
 " landmarks = extractor.get_landmarks_from_path(img_path)\n",
 " if len(landmarks) == 1:\n",
 " keypoints = landmarks[0][\"keypoints\"]\n",
 " offset = 25\n",
 " eye = min(keypoints[\"left_eye\"][1]-offset, keypoints[\"right_eye\"][1]-offset)\n",
 " img[:int(eye), :, :] = 0\n",
 " \n",
 " \n",
 " img_to_print = Image.fromarray(img.astype(np.uint8))\n",
 " new_path_img = os.path.join(new_path, person_nr, \"frontal\", img_nr)\n",
 " img_to_print.save(new_path_img)\n",
 " else:\n",
 " pass\n",
 " #print(\"{} has {} faces\".format(img_path, len(landmarks)))\n",
 " \n",
 "print_results(name)"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "import random\n",
 "\n",
 "for i in range(10):\n",
 " name = \"cfp-random-black-bars-{}\".format(i)\n",
 " original_path=os.path.join(path,\"cfp-dataset/Data/Images\")\n",
 " new_path=os.path.join(path,name+\"/Data/Images\")\n",
 " for person_nr in tqdm(os.listdir(original_path)):\n",
 " frontal_path = os.path.join(original_path, person_nr, \"frontal\")\n",
 " Path(os.path.join(new_path, person_nr, \"frontal\")).mkdir(parents=True, exist_ok=True)\n",
 " for img_nr in os.listdir(frontal_path):\n",
 " img_path = os.path.join(frontal_path, img_nr)\n",
 " img = cv2.imread(img_path)\n",
 " img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)\n",
 " landmarks = extractor.get_landmarks_from_path(img_path)\n",
 " if len(landmarks) == 1:\n",
 " height = int(img.shape[0]/10)\n",
 " start_y = random.randint(0,int(img.shape[0]-height))\n",
 " img[start_y-height:start_y+height, :, :] = 0\n",
 "\n",
 "\n",
 " img_to_print = Image.fromarray(img.astype(np.uint8))\n",
 " new_path_img = os.path.join(new_path, person_nr, \"frontal\", img_nr)\n",
 " img_to_print.save(new_path_img)\n",
 " else:\n",
 " pass\n",
 " #print(\"{} has {} faces\".format(img_path, len(landmarks)))\n",
 "\n",
 " print_results(name)"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "name = \"cfp-top-half-only-more\"\n",
 "original_path=os.path.join(path,\"cfp-dataset/Data/Images\")\n",
 "new_path=os.path.join(path,name+\"/Data/Images\")\n",
 "for person_nr in tqdm(os.listdir(original_path)):\n",
 " frontal_path = os.path.join(original_path, person_nr, \"frontal\")\n",
 " Path(os.path.join(new_path, person_nr, \"frontal\")).mkdir(parents=True, exist_ok=True)\n",
 " for img_nr in os.listdir(frontal_path):\n",
 " img_path = os.path.join(frontal_path, img_nr)\n",
 " img = cv2.imread(img_path)\n",
 " img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)\n",
 " landmarks = extractor.get_landmarks_from_path(img_path)\n",
 " if len(landmarks) == 1:\n",
 " landmarks = landmarks[0]\n",
 " nose = landmarks[\"keypoints\"][\"nose\"]\n",
 " img[int(nose[1]+nose[1]/10):, :, :] = 0\n",
 " \n",
 " \n",
 " img_to_print = Image.fromarray(img.astype(np.uint8))\n",
 " new_path_img = os.path.join(new_path, person_nr, \"frontal\", img_nr)\n",
 " img_to_print.save(new_path_img)\n",
 " else:\n",
 " pass\n",
 " #print(\"{} has {} faces\".format(img_path, len(landmarks)))\n",
 " \n",
 "print_results(name)"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "name = \"cfp-vert-bar-larger\"\n",
 "original_path=os.path.join(path,\"cfp-dataset/Data/Images\")\n",
 "new_path=os.path.join(path,name+\"/Data/Images\")\n",
 "for person_nr in tqdm(os.listdir(original_path)):\n",
 " frontal_path = os.path.join(original_path, person_nr, \"frontal\")\n",
 " Path(os.path.join(new_path, person_nr, \"frontal\")).mkdir(parents=True, exist_ok=True)\n",
 " for img_nr in os.listdir(frontal_path):\n",
 " img_path = os.path.join(frontal_path, img_nr)\n",
 " img = cv2.imread(img_path)\n",
 " img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)\n",
 " landmarks = extractor.get_landmarks_from_path(img_path)\n",
 " if len(landmarks) == 1:\n",
 " landmarks = landmarks[0]\n",
 " nose = landmarks[\"keypoints\"][\"nose\"]\n",
 " img[:, int(nose[0]+nose[0]/10):, :] = 0\n",
 " \n",
 " \n",
 " img_to_print = Image.fromarray(img.astype(np.uint8))\n",
 " new_path_img = os.path.join(new_path, person_nr, \"frontal\", img_nr)\n",
 " img_to_print.save(new_path_img)\n",
 " else:\n",
 " pass\n",
 " #print(\"{} has {} faces\".format(img_path, len(landmarks)))\n",
 " \n",
 "print_results(name)"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "name = \"cfp-vert-bar-larger-small\"\n",
 "original_path=os.path.join(path,\"cfp-dataset/Data/Images\")\n",
 "new_path=os.path.join(path,name+\"/Data/Images\")\n",
 "for person_nr in tqdm(os.listdir(original_path)):\n",
 " frontal_path = os.path.join(original_path, person_nr, \"frontal\")\n",
 " Path(os.path.join(new_path, person_nr, \"frontal\")).mkdir(parents=True, exist_ok=True)\n",
 " for img_nr in os.listdir(frontal_path):\n",
 " img_path = os.path.join(frontal_path, img_nr)\n",
 " img = cv2.imread(img_path)\n",
 " img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)\n",
 " landmarks = extractor.get_landmarks_from_path(img_path)\n",
 " if len(landmarks) == 1:\n",
 " landmarks = landmarks[0]\n",
 " nose = landmarks[\"keypoints\"][\"nose\"]\n",
 " img[:, int(nose[0]+nose[0]/5):, :] = 0\n",
 " \n",
 " \n",
 " img_to_print = Image.fromarray(img.astype(np.uint8))\n",
 " new_path_img = os.path.join(new_path, person_nr, \"frontal\", img_nr)\n",
 " img_to_print.save(new_path_img)\n",
 " else:\n",
 " pass\n",
 " #print(\"{} has {} faces\".format(img_path, len(landmarks)))\n",
 " \n",
 "print_results(name)"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "name = \"cfp-vert-bars\"\n",
 "original_path=os.path.join(path,\"cfp-dataset/Data/Images\")\n",
 "new_path=os.path.join(path,name+\"/Data/Images\")\n",
 "for person_nr in tqdm(os.listdir(original_path)):\n",
 " frontal_path = os.path.join(original_path, person_nr, \"frontal\")\n",
 " Path(os.path.join(new_path, person_nr, \"frontal\")).mkdir(parents=True, exist_ok=True)\n",
 " for img_nr in os.listdir(frontal_path):\n",
 " img_path = os.path.join(frontal_path, img_nr)\n",
 " img = cv2.imread(img_path)\n",
 " img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)\n",
 " landmarks = extractor.get_landmarks_from_path(img_path)\n",
 " if len(landmarks) == 1:\n",
 " img_path = os.path.join(frontal_path, img_nr)\n",
 " img = cv2.imread(img_path)\n",
 " img[:, int(img.shape[0]*2/3):, :] = 0\n",
 " \n",
 " \n",
 " img_to_print = Image.fromarray(img.astype(np.uint8))\n",
 " new_path_img = os.path.join(new_path, person_nr, \"frontal\", img_nr)\n",
 " img_to_print.save(new_path_img)\n",
 " else:\n",
 " pass\n",
 " #print(\"{} has {} faces\".format(img_path, len(landmarks)))\n",
 " \n",
 "print_results(name)"
]
 }
],
 "metadata": {
 "kernelspec": {
 "display_name": "env",
 "language": "python",
 "name": "env"
 },
 "language_info": {
 "codemirror_mode": {
 "name": "ipython",
 "version": 3
 },
 "file_extension": ".py",
 "mimetype": "text/x-python",
 "name": "python",
 "nbconvert_exporter": "python",
 "pygments_lexer": "ipython3",
 "version": "3.8.6"
 }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}

reduced-embeddings-analysis-icprs/.gitattributes

*.tflite filter=lfs diff=lfs merge=lfs -text
**.tflite filter=lfs diff=lfs merge=lfs -text

reduced-embeddings-analysis-icprs/flake.nix

{
 inputs = {
 mozpkgs = {
 url = "github:mozilla/nixpkgs-mozilla";
 flake = false;
 };
 naersk = {
 url = "github:nmattia/naersk";
 };
 nixpkgs = {
 url = "github:nixOS/nixpkgs/6b1b72c0f887a478a5aac355674ff6df0fc44f44";
 };
 nixpkgs-flatbuffers = {
 url = "github:nixOS/nixpkgs/d1c3fea7ecbed758168787fe4e4a3157e52bc808";
 };
 utils = {
 url = "github:numtide/flake-utils";
 };
 };

 outputs = { self, naersk, mozpkgs, nixpkgs, nixpkgs-flatbuffers, utils }:
 utils.lib.eachDefaultSystem (system:
 let
 pkgs = import nixpkgs { inherit system; };
 flatbuffers = (import nixpkgs-flatbuffers { inherit system; }).flatbuffers;
 fixed-tensorflow-lite = (pkgs.tensorflow-lite
 .override { inherit flatbuffers; })
 .overrideAttrs (self: super: { meta.knownVulnerabilities = []; }
);
 stdenv = pkgs.clangStdenv;

 mozilla = pkgs.callPackage (mozpkgs + "/package-set.nix") {};
 rust = (mozilla.rustChannelOf {
 date = "2023-05-07";
 channel = "nightly";
 sha256 = "sha256-t7DNlUBS9R7PphCxOU7ITXx1DGEhDOca0Q+Kyt7NHMA=";
 }).rust;
 naersk-lib = pkgs.callPackage naersk {
 cargo = rust;
 rustc = rust;
 };
 pname = "reducedemb";
 in {
 defaultPackage = naersk-lib.buildPackage {
 name = pname;
 version = "0.1.0";
 root = ./.;
 src = ./.;
 doCheck = true; # run the tests (nix logs to view output logs)
 LIBCLANG_PATH="${pkgs.libclang.lib}/lib";
	#mode = "clippy";
 TFLITE_X86_64_LIB_DIR="${fixed-tensorflow-lite}/lib";
 TFLITE_LIB_DIR="${fixed-tensorflow-lite}/lib";
 RUST_BACKTRACE=1;
 gitSubmodules = true;
 #singleStep = true;
 preConfigure = ''
 # Set C flags for Rust's bindgen program. Unlike ordinary C
 # compilation, bindgen does not invoke $CC directly. Instead it
 # uses LLVM's libclang. To make sure all necessary flags are
 # included we need to look in a few places.
 # TODO: generalize this process for other use-cases.
 export BINDGEN_EXTRA_CLANG_ARGS="$(< ${stdenv.cc}/nix-support/libc-crt1-cflags) \
 $(< ${stdenv.cc}/nix-support/libc-cflags) \
 $(< ${stdenv.cc}/nix-support/cc-cflags) \
 $(< ${stdenv.cc}/nix-support/libcxx-cxxflags) \
 ${pkgs.lib.optionalString stdenv.cc.isClang "-idirafter ${stdenv.cc.cc}/lib/clang/${pkgs.lib.getVersion stdenv.cc.cc}/include"} \
 ${pkgs.lib.optionalString stdenv.cc.isGNU "-isystem ${stdenv.cc.cc}/include/c++/${pkgs.lib.getVersion stdenv.cc.cc} -isystem ${stdenv.cc.cc}/include/c++/${pkgs.lib.getVersion stdenv.cc.cc}/${stdenv.hostPlatform.config} -idirafter ${stdenv.cc.cc}/lib/gcc/${stdenv.hostPlatform.config}/${pkgs.lib.getVersion stdenv.cc.cc}/include"}
 "
 '';
 buildInputs = with pkgs; [
 vtk
 opencv
 fixed-tensorflow-lite
];
 nativeBuildInputs = with pkgs; [
 #breakpointHook
 stdenv.cc
 libclang
 pkgconfig
];
 };
 });
}

reduced-embeddings-analysis-icprs/.gitignore

/target
/result

reduced-embeddings-analysis-icprs/src/arcface.rs

reduced-embeddings-analysis-icprs/src/misc.rs

reduced-embeddings-analysis-icprs/src/lfw.rs

reduced-embeddings-analysis-icprs/src/main.rs

reduced-embeddings-analysis-icprs/src/cplfw.rs

reduced-embeddings-analysis-icprs/LICENSE

 EUROPEAN UNION PUBLIC LICENCE v. 1.2
 EUPL © the European Union 2007, 2016

This European Union Public Licence (the ‘EUPL’) applies to the Work (as defined
below) which is provided under the terms of this Licence. Any use of the Work,
other than as authorised under this Licence is prohibited (to the extent such
use is covered by a right of the copyright holder of the Work).

The Work is provided under the terms of this Licence when the Licensor (as
defined below) has placed the following notice immediately following the
copyright notice for the Work:

 Licensed under the EUPL

or has expressed by any other means his willingness to license under the EUPL.

1. Definitions

In this Licence, the following terms have the following meaning:

- ‘The Licence’: this Licence.

- ‘The Original Work’: the work or software distributed or communicated by the
 Licensor under this Licence, available as Source Code and also as Executable
 Code as the case may be.

- ‘Derivative Works’: the works or software that could be created by the
 Licensee, based upon the Original Work or modifications thereof. This Licence
 does not define the extent of modification or dependence on the Original Work
 required in order to classify a work as a Derivative Work; this extent is
 determined by copyright law applicable in the country mentioned in Article 15.

- ‘The Work’: the Original Work or its Derivative Works.

- ‘The Source Code’: the human-readable form of the Work which is the most
 convenient for people to study and modify.

- ‘The Executable Code’: any code which has generally been compiled and which is
 meant to be interpreted by a computer as a program.

- ‘The Licensor’: the natural or legal person that distributes or communicates
 the Work under the Licence.

- ‘Contributor(s)’: any natural or legal person who modifies the Work under the
 Licence, or otherwise contributes to the creation of a Derivative Work.

- ‘The Licensee’ or ‘You’: any natural or legal person who makes any usage of
 the Work under the terms of the Licence.

- ‘Distribution’ or ‘Communication’: any act of selling, giving, lending,
 renting, distributing, communicating, transmitting, or otherwise making
 available, online or offline, copies of the Work or providing access to its
 essential functionalities at the disposal of any other natural or legal
 person.

2. Scope of the rights granted by the Licence

The Licensor hereby grants You a worldwide, royalty-free, non-exclusive,
sublicensable licence to do the following, for the duration of copyright vested
in the Original Work:

- use the Work in any circumstance and for all usage,
- reproduce the Work,
- modify the Work, and make Derivative Works based upon the Work,
- communicate to the public, including the right to make available or display
 the Work or copies thereof to the public and perform publicly, as the case may
 be, the Work,
- distribute the Work or copies thereof,
- lend and rent the Work or copies thereof,
- sublicense rights in the Work or copies thereof.

Those rights can be exercised on any media, supports and formats, whether now
known or later invented, as far as the applicable law permits so.

In the countries where moral rights apply, the Licensor waives his right to
exercise his moral right to the extent allowed by law in order to make effective
the licence of the economic rights here above listed.

The Licensor grants to the Licensee royalty-free, non-exclusive usage rights to
any patents held by the Licensor, to the extent necessary to make use of the
rights granted on the Work under this Licence.

3. Communication of the Source Code

The Licensor may provide the Work either in its Source Code form, or as
Executable Code. If the Work is provided as Executable Code, the Licensor
provides in addition a machine-readable copy of the Source Code of the Work
along with each copy of the Work that the Licensor distributes or indicates, in
a notice following the copyright notice attached to the Work, a repository where
the Source Code is easily and freely accessible for as long as the Licensor
continues to distribute or communicate the Work.

4. Limitations on copyright

Nothing in this Licence is intended to deprive the Licensee of the benefits from
any exception or limitation to the exclusive rights of the rights owners in the
Work, of the exhaustion of those rights or of other applicable limitations
thereto.

5. Obligations of the Licensee

The grant of the rights mentioned above is subject to some restrictions and
obligations imposed on the Licensee. Those obligations are the following:

Attribution right: The Licensee shall keep intact all copyright, patent or
trademarks notices and all notices that refer to the Licence and to the
disclaimer of warranties. The Licensee must include a copy of such notices and a
copy of the Licence with every copy of the Work he/she distributes or
communicates. The Licensee must cause any Derivative Work to carry prominent
notices stating that the Work has been modified and the date of modification.

Copyleft clause: If the Licensee distributes or communicates copies of the
Original Works or Derivative Works, this Distribution or Communication will be
done under the terms of this Licence or of a later version of this Licence
unless the Original Work is expressly distributed only under this version of the
Licence — for example by communicating ‘EUPL v. 1.2 only’. The Licensee
(becoming Licensor) cannot offer or impose any additional terms or conditions on
the Work or Derivative Work that alter or restrict the terms of the Licence.

Compatibility clause: If the Licensee Distributes or Communicates Derivative
Works or copies thereof based upon both the Work and another work licensed under
a Compatible Licence, this Distribution or Communication can be done under the
terms of this Compatible Licence. For the sake of this clause, ‘Compatible
Licence’ refers to the licences listed in the appendix attached to this Licence.
Should the Licensee's obligations under the Compatible Licence conflict with
his/her obligations under this Licence, the obligations of the Compatible
Licence shall prevail.

Provision of Source Code: When distributing or communicating copies of the Work,
the Licensee will provide a machine-readable copy of the Source Code or indicate
a repository where this Source will be easily and freely available for as long
as the Licensee continues to distribute or communicate the Work.

Legal Protection: This Licence does not grant permission to use the trade names,
trademarks, service marks, or names of the Licensor, except as required for
reasonable and customary use in describing the origin of the Work and
reproducing the content of the copyright notice.

6. Chain of Authorship

The original Licensor warrants that the copyright in the Original Work granted
hereunder is owned by him/her or licensed to him/her and that he/she has the
power and authority to grant the Licence.

Each Contributor warrants that the copyright in the modifications he/she brings
to the Work are owned by him/her or licensed to him/her and that he/she has the
power and authority to grant the Licence.

Each time You accept the Licence, the original Licensor and subsequent
Contributors grant You a licence to their contributions to the Work, under the
terms of this Licence.

7. Disclaimer of Warranty

The Work is a work in progress, which is continuously improved by numerous
Contributors. It is not a finished work and may therefore contain defects or
‘bugs’ inherent to this type of development.

For the above reason, the Work is provided under the Licence on an ‘as is’ basis
and without warranties of any kind concerning the Work, including without
limitation merchantability, fitness for a particular purpose, absence of defects
or errors, accuracy, non-infringement of intellectual property rights other than
copyright as stated in Article 6 of this Licence.

This disclaimer of warranty is an essential part of the Licence and a condition
for the grant of any rights to the Work.

8. Disclaimer of Liability

Except in the cases of wilful misconduct or damages directly caused to natural
persons, the Licensor will in no event be liable for any direct or indirect,
material or moral, damages of any kind, arising out of the Licence or of the use
of the Work, including without limitation, damages for loss of goodwill, work
stoppage, computer failure or malfunction, loss of data or any commercial
damage, even if the Licensor has been advised of the possibility of such damage.
However, the Licensor will be liable under statutory product liability laws as
far such laws apply to the Work.

9. Additional agreements

While distributing the Work, You may choose to conclude an additional agreement,
defining obligations or services consistent with this Licence. However, if
accepting obligations, You may act only on your own behalf and on your sole
responsibility, not on behalf of the original Licensor or any other Contributor,
and only if You agree to indemnify, defend, and hold each Contributor harmless
for any liability incurred by, or claims asserted against such Contributor by
the fact You have accepted any warranty or additional liability.

10. Acceptance of the Licence

The provisions of this Licence can be accepted by clicking on an icon ‘I agree’
placed under the bottom of a window displaying the text of this Licence or by
affirming consent in any other similar way, in accordance with the rules of
applicable law. Clicking on that icon indicates your clear and irrevocable
acceptance of this Licence and all of its terms and conditions.

Similarly, you irrevocably accept this Licence and all of its terms and
conditions by exercising any rights granted to You by Article 2 of this Licence,
such as the use of the Work, the creation by You of a Derivative Work or the
Distribution or Communication by You of the Work or copies thereof.

11. Information to the public

In case of any Distribution or Communication of the Work by means of electronic
communication by You (for example, by offering to download the Work from a
remote location) the distribution channel or media (for example, a website) must
at least provide to the public the information requested by the applicable law
regarding the Licensor, the Licence and the way it may be accessible, concluded,
stored and reproduced by the Licensee.

12. Termination of the Licence

The Licence and the rights granted hereunder will terminate automatically upon
any breach by the Licensee of the terms of the Licence.

Such a termination will not terminate the licences of any person who has
received the Work from the Licensee under the Licence, provided such persons
remain in full compliance with the Licence.

13. Miscellaneous

Without prejudice of Article 9 above, the Licence represents the complete
agreement between the Parties as to the Work.

If any provision of the Licence is invalid or unenforceable under applicable
law, this will not affect the validity or enforceability of the Licence as a
whole. Such provision will be construed or reformed so as necessary to make it
valid and enforceable.

The European Commission may publish other linguistic versions or new versions of
this Licence or updated versions of the Appendix, so far this is required and
reasonable, without reducing the scope of the rights granted by the Licence. New
versions of the Licence will be published with a unique version number.

All linguistic versions of this Licence, approved by the European Commission,
have identical value. Parties can take advantage of the linguistic version of
their choice.

14. Jurisdiction

Without prejudice to specific agreement between parties,

- any litigation resulting from the interpretation of this License, arising
 between the European Union institutions, bodies, offices or agencies, as a
 Licensor, and any Licensee, will be subject to the jurisdiction of the Court
 of Justice of the European Union, as laid down in article 272 of the Treaty on
 the Functioning of the European Union,

- any litigation arising between other parties and resulting from the
 interpretation of this License, will be subject to the exclusive jurisdiction
 of the competent court where the Licensor resides or conducts its primary
 business.

15. Applicable Law

Without prejudice to specific agreement between parties,

- this Licence shall be governed by the law of the European Union Member State
 where the Licensor has his seat, resides or has his registered office,

- this licence shall be governed by Belgian law if the Licensor has no seat,
 residence or registered office inside a European Union Member State.

Appendix

‘Compatible Licences’ according to Article 5 EUPL are:

- GNU General Public License (GPL) v. 2, v. 3
- GNU Affero General Public License (AGPL) v. 3
- Open Software License (OSL) v. 2.1, v. 3.0
- Eclipse Public License (EPL) v. 1.0
- CeCILL v. 2.0, v. 2.1
- Mozilla Public Licence (MPL) v. 2
- GNU Lesser General Public Licence (LGPL) v. 2.1, v. 3
- Creative Commons Attribution-ShareAlike v. 3.0 Unported (CC BY-SA 3.0) for
 works other than software
- European Union Public Licence (EUPL) v. 1.1, v. 1.2
- Québec Free and Open-Source Licence — Reciprocity (LiLiQ-R) or Strong
 Reciprocity (LiLiQ-R+).

The European Commission may update this Appendix to later versions of the above
licences without producing a new version of the EUPL, as long as they provide
the rights granted in Article 2 of this Licence and protect the covered Source
Code from exclusive appropriation.

All other changes or additions to this Appendix require the production of a new
EUPL version.

reduced-embeddings-analysis-icprs/README.md

Shrinking embeddings, not accuracy: Performance-preserving reduction of facial embeddings for complex face verification computations

This repository aims at replicating the results to be presented in:

- Philipp Hofer, Michael Roland, Philipp Schwarz, and René Mayrhofer: "Shrinking embeddings, not accuracy: Performance-preserving reduction of facial embeddings for complex face verification computations" in ICPRS '24: 14th International Conference on Pattern Recognition Systems (accepted)

In our publication we present various statistics using the code from this repository.

Setup

- To compile the binary for this project, ensure that Nix is installed on your system. Once Nix is installed, open your terminal and execute the following command to build the binary: `nix build`. This command will automatically fetch the necessary dependencies and compile the source code into a runnable binary. The compiled binary will be stored in `./result/bin/reducedemb`.
- To run this application, you must specify which dataset to operate on by using the `--data` flag followed by the complexity of the dataset (`easy` for LFW and `hard` for CPLFW).
 - `--easy --lfwpath [path_to_lfw]`: Sets the path to the LFW dataset.
 - `--hard --cplfwpath [path_to_cplfw]`: Sets the path to the CPLFW dataset.
- Run the application by specifying the required dataset and its path, along with the action to perform on the dataset. Example: `./result/bin/reducedemb --data easy --lfwpath "/path/to/lfw" --action cache`
- Available actions:
 - `--action cache`: Caches the data modifying the records in place.
 - `--action extract-emb`: Extracts embeddings and updates records.
 - `--action truncate-embedding-size`: Truncates the size of embeddings to a fixed dimension.
 - `--action truncate-embedding-size-rel`: Truncates embedding sizes relatively.
 - `--action random-dimensions`: Randomly reduces dimensions to a specified subset.
 - `--action random-dimensions-full`: Applies dimensionality reduction to the entire dataset.
 - `--action best-elements-full`: Identifies and retains the most significant elements, requiring specification of the number.
 - `--action best-elements-greedy`: Similar to best-elements-full but uses a greedy algorithm for selection.
 - `--action heatmap`: Generates a heatmap from the data dimensions.
 - `--action quant`: Quantizes the dataset.
 - `--action proposed`: Executes a proposed action customized for specific requirements.
- For actions that require specifying the number of elements or dimensions, use: `--amount [number]`

Acknowledgements

This work has been carried out within the scope of Digidow, the Christian Doppler Laboratory for Private Digital Authentication in the Physical World and has partially been supported by the LIT Secure and Correct Systems Lab. We gratefully acknowledge financial support by the Austrian Federal Ministry of Labour and Economy, the National Foundation for Research, Technology and Development, the Christian Doppler Research Association, 3 Banken IT GmbH, ekey biometric systems GmbH, Kepler Universitätsklinikum GmbH, NXP Semiconductors Austria GmbH & Co KG, Österreichische Staatsdruckerei GmbH, and the State of Upper Austria.

License

This project is licensed under the EUPL, Version 1.2. For more details, see the [EUPL License](https://joinup.ec.europa.eu/software/page/eupl).

reduced-embeddings-analysis-icprs/Cargo.lock

This file is automatically @generated by Cargo.
It is not intended for manual editing.
version = 3

[[package]]
name = "ab_glyph_rasterizer"
version = "0.1.8"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c71b1793ee61086797f5c80b6efa2b8ffa6d5dd703f118545808a7f2e27f7046"

[[package]]
name = "adler"
version = "1.0.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f26201604c87b1e01bd3d98f8d5d9a8fcbb815e8cedb41ffccbeb4bf593a35fe"

[[package]]
name = "aho-corasick"
version = "0.7.20"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "cc936419f96fa211c1b9166887b38e5e40b19958e5b895be7c1f93adec7071ac"
dependencies = [
 "memchr",
]

[[package]]
name = "aho-corasick"
version = "1.0.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "43f6cb1bf222025340178f382c426f13757b2960e89779dfcb319c32542a5a41"
dependencies = [
 "memchr",
]

[[package]]
name = "anes"
version = "0.1.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4b46cbb362ab8752921c97e041f5e366ee6297bd428a31275b9fcf1e380f7299"

[[package]]
name = "ansi_term"
version = "0.12.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d52a9bb7ec0cf484c551830a7ce27bd20d67eac647e1befb56b0be4ee39a55d2"
dependencies = [
 "winapi",
]

[[package]]
name = "approx"
version = "0.5.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "cab112f0a86d568ea0e627cc1d6be74a1e9cd55214684db5561995f6dad897c6"
dependencies = [
 "num-traits",
]

[[package]]
name = "atty"
version = "0.2.14"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d9b39be18770d11421cdb1b9947a45dd3f37e93092cbf377614828a319d5fee8"
dependencies = [
 "hermit-abi 0.1.19",
 "libc",
 "winapi",
]

[[package]]
name = "autocfg"
version = "1.1.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d468802bab17cbc0cc575e9b053f41e72aa36bfa6b7f55e3529ffa43161b97fa"

[[package]]
name = "base64"
version = "0.13.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9e1b586273c5702936fe7b7d6896644d8be71e6314cfe09d3167c95f712589e8"

[[package]]
name = "bindgen"
version = "0.55.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "75b13ce559e6433d360c26305643803cb52cfbabbc2b9c47ce04a58493dfb443"
dependencies = [
 "bitflags",
 "cexpr",
 "cfg-if 0.1.10",
 "clang-sys",
 "clap 2.34.0",
 "env_logger",
 "lazy_static",
 "lazycell",
 "log",
 "peeking_take_while",
 "proc-macro2",
 "quote",
 "regex",
 "rustc-hash",
 "shlex 0.1.1",
 "which",
]

[[package]]
name = "bit_field"
version = "0.10.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "dc827186963e592360843fb5ba4b973e145841266c1357f7180c43526f2e5b61"

[[package]]
name = "bitflags"
version = "1.3.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "bef38d45163c2f1dde094a7dfd33ccf595c92905c8f8f4fdc18d06fb1037718a"

[[package]]
name = "bumpalo"
version = "3.13.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a3e2c3daef883ecc1b5d58c15adae93470a91d425f3532ba1695849656af3fc1"

[[package]]
name = "bytemuck"
version = "1.13.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "17febce684fd15d89027105661fec94afb475cb995fbc59d2865198446ba2eea"

[[package]]
name = "byteorder"
version = "1.4.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "14c189c53d098945499cdfa7ecc63567cf3886b3332b312a5b4585d8d3a6a610"

[[package]]
name = "cast"
version = "0.3.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "37b2a672a2cb129a2e41c10b1224bb368f9f37a2b16b612598138befd7b37eb5"

[[package]]
name = "cc"
version = "1.0.79"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "50d30906286121d95be3d479533b458f87493b30a4b5f79a607db8f5d11aa91f"
dependencies = [
 "jobserver",
]

[[package]]
name = "cexpr"
version = "0.4.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f4aedb84272dbe89af497cf81375129abda4fc0a9e7c5d317498c15cc30c0d27"
dependencies = [
 "nom",
]

[[package]]
name = "cfg-if"
version = "0.1.10"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4785bdd1c96b2a846b2bd7cc02e86b6b3dbf14e7e53446c4f54c92a361040822"

[[package]]
name = "cfg-if"
version = "1.0.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "baf1de4339761588bc0619e3cbc0120ee582ebb74b53b4efbf79117bd2da40fd"

[[package]]
name = "ciborium"
version = "0.2.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "effd91f6c78e5a4ace8a5d3c0b6bfaec9e2baaef55f3efc00e45fb2e477ee926"
dependencies = [
 "ciborium-io",
 "ciborium-ll",
 "serde",
]

[[package]]
name = "ciborium-io"
version = "0.2.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "cdf919175532b369853f5d5e20b26b43112613fd6fe7aee757e35f7a44642656"

[[package]]
name = "ciborium-ll"
version = "0.2.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "defaa24ecc093c77630e6c15e17c51f5e187bf35ee514f4e2d67baaa96dae22b"
dependencies = [
 "ciborium-io",
 "half 1.8.2",
]

[[package]]
name = "clang"
version = "2.0.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "84c044c781163c001b913cd018fc95a628c50d0d2dfea8bca77dad71edb16e37"
dependencies = [
 "clang-sys",
 "libc",
]

[[package]]
name = "clang-sys"
version = "1.6.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c688fc74432808e3eb684cae8830a86be1d66a2bd58e1f248ed0960a590baf6f"
dependencies = [
 "glob",
 "libc",
 "libloading",
]

[[package]]
name = "clap"
version = "2.34.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a0610544180c38b88101fecf2dd634b174a62eef6946f84dfc6a7127512b381c"
dependencies = [
 "ansi_term",
 "atty",
 "bitflags",
 "strsim",
 "textwrap 0.11.0",
 "unicode-width",
 "vec_map",
]

[[package]]
name = "clap"
version = "3.2.25"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4ea181bf566f71cb9a5d17a59e1871af638180a18fb0035c92ae62b705207123"
dependencies = [
 "bitflags",
 "clap_lex",
 "indexmap",
 "textwrap 0.16.0",
]

[[package]]
name = "clap_lex"
version = "0.2.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "2850f2f5a82cbf437dd5af4d49848fbdfc27c157c3d010345776f952765261c5"
dependencies = [
 "os_str_bytes",
]

[[package]]
name = "color_quant"
version = "1.1.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3d7b894f5411737b7867f4827955924d7c254fc9f4d91a6aad6b097804b1018b"

[[package]]
name = "conv"
version = "0.3.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "78ff10625fd0ac447827aa30ea8b861fead473bb60aeb73af6c1c58caf0d1299"
dependencies = [
 "custom_derive",
]

[[package]]
name = "cpp"
version = "0.5.8"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "43b6a1d47f376a62bbea281408fe331879b9822c1edb8f67320c7cb8d96a02eb"
dependencies = [
 "cpp_macros",
]

[[package]]
name = "cpp_build"
version = "0.5.8"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5b8f839b67a3deba30b58b281b5fca61477a90830beb084c58bdb9bebd227a1a"
dependencies = [
 "cc",
 "cpp_common",
 "lazy_static",
 "proc-macro2",
 "regex",
 "syn 2.0.22",
 "unicode-xid",
]

[[package]]
name = "cpp_common"
version = "0.5.8"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "42d2b968b7b2ac412836e8ce1dfc3dfd5648ae7e8a42fcbbf5bc1d33bb795b0d"
dependencies = [
 "lazy_static",
 "proc-macro2",
 "syn 2.0.22",
]

[[package]]
name = "cpp_macros"
version = "0.5.8"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5d36d9acb58020380e756d56a8dfc84d0f6ace423bbd4fedf83992b257b7f147"
dependencies = [
 "aho-corasick 0.7.20",
 "byteorder",
 "cpp_common",
 "lazy_static",
 "proc-macro2",
 "quote",
 "syn 2.0.22",
]

[[package]]
name = "crc32fast"
version = "1.3.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b540bd8bc810d3885c6ea91e2018302f68baba2129ab3e88f32389ee9370880d"
dependencies = [
 "cfg-if 1.0.0",
]

[[package]]
name = "criterion"
version = "0.4.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e7c76e09c1aae2bc52b3d2f29e13c6572553b30c4aa1b8a49fd70de6412654cb"
dependencies = [
 "anes",
 "atty",
 "cast",
 "ciborium",
 "clap 3.2.25",
 "criterion-plot",
 "itertools 0.10.5",
 "lazy_static",
 "num-traits",
 "oorandom",
 "plotters",
 "rayon",
 "regex",
 "serde",
 "serde_derive",
 "serde_json",
 "tinytemplate",
 "walkdir",
]

[[package]]
name = "criterion-plot"
version = "0.5.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "6b50826342786a51a89e2da3a28f1c32b06e387201bc2d19791f622c673706b1"
dependencies = [
 "cast",
 "itertools 0.10.5",
]

[[package]]
name = "crossbeam-channel"
version = "0.5.8"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a33c2bf77f2df06183c3aa30d1e96c0695a313d4f9c453cc3762a6db39f99200"
dependencies = [
 "cfg-if 1.0.0",
 "crossbeam-utils",
]

[[package]]
name = "crossbeam-deque"
version = "0.8.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ce6fd6f855243022dcecf8702fef0c297d4338e226845fe067f6341ad9fa0cef"
dependencies = [
 "cfg-if 1.0.0",
 "crossbeam-epoch",
 "crossbeam-utils",
]

[[package]]
name = "crossbeam-epoch"
version = "0.9.15"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ae211234986c545741a7dc064309f67ee1e5ad243d0e48335adc0484d960bcc7"
dependencies = [
 "autocfg",
 "cfg-if 1.0.0",
 "crossbeam-utils",
 "memoffset",
 "scopeguard",
]

[[package]]
name = "crossbeam-utils"
version = "0.8.16"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5a22b2d63d4d1dc0b7f1b6b2747dd0088008a9be28b6ddf0b1e7d335e3037294"
dependencies = [
 "cfg-if 1.0.0",
]

[[package]]
name = "crunchy"
version = "0.2.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7a81dae078cea95a014a339291cec439d2f232ebe854a9d672b796c6afafa9b7"

[[package]]
name = "csv"
version = "1.2.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "626ae34994d3d8d668f4269922248239db4ae42d538b14c398b74a52208e8086"
dependencies = [
 "csv-core",
 "itoa",
 "ryu",
 "serde",
]

[[package]]
name = "csv-core"
version = "0.1.10"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "2b2466559f260f48ad25fe6317b3c8dac77b5bdb5763ac7d9d6103530663bc90"
dependencies = [
 "memchr",
]

[[package]]
name = "custom_derive"
version = "0.1.7"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ef8ae57c4978a2acd8b869ce6b9ca1dfe817bff704c220209fdef2c0b75a01b9"

[[package]]
name = "dunce"
version = "1.0.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "56ce8c6da7551ec6c462cbaf3bfbc75131ebbfa1c944aeaa9dab51ca1c5f0c3b"

[[package]]
name = "either"
version = "1.8.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7fcaabb2fef8c910e7f4c7ce9f67a1283a1715879a7c230ca9d6d1ae31f16d91"

[[package]]
name = "embed-doc-image"
version = "0.1.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "af36f591236d9d822425cb6896595658fa558fcebf5ee8accac1d4b92c47166e"
dependencies = [
 "base64",
 "proc-macro2",
 "quote",
 "syn 1.0.109",
]

[[package]]
name = "env_logger"
version = "0.7.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "44533bbbb3bb3c1fa17d9f2e4e38bbbaf8396ba82193c4cb1b6445d711445d36"
dependencies = [
 "atty",
 "humantime",
 "log",
 "regex",
 "termcolor",
]

[[package]]
name = "errno"
version = "0.3.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4bcfec3a70f97c962c307b2d2c56e358cf1d00b558d74262b5f929ee8cc7e73a"
dependencies = [
 "errno-dragonfly",
 "libc",
 "windows-sys",
]

[[package]]
name = "errno-dragonfly"
version = "0.1.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "aa68f1b12764fab894d2755d2518754e71b4fd80ecfb822714a1206c2aab39bf"
dependencies = [
 "cc",
 "libc",
]

[[package]]
name = "exr"
version = "1.6.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "279d3efcc55e19917fff7ab3ddd6c14afb6a90881a0078465196fe2f99d08c56"
dependencies = [
 "bit_field",
 "flume",
 "half 2.3.1",
 "lebe",
 "miniz_oxide",
 "rayon-core",
 "smallvec",
 "zune-inflate",
]

[[package]]
name = "face"
version = "0.1.0"
source = "git+https://git.ins.jku.at/proj/digidow/face-lib.git#329c83e53f7bfd432c07cbbcec2ada74e22ddee4"
dependencies = [
 "byteorder",
 "criterion",
 "embed-doc-image",
 "image",
 "imageproc",
 "itertools 0.10.5",
 "nalgebra 0.32.2",
 "ndarray",
 "num_cpus",
 "opencv",
 "serde",
 "serde_json",
 "tflite",
]

[[package]]
name = "fdeflate"
version = "0.3.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d329bdeac514ee06249dabc27877490f17f5d371ec693360768b838e19f3ae10"
dependencies = [
 "simd-adler32",
]

[[package]]
name = "flate2"
version = "1.0.26"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3b9429470923de8e8cbd4d2dc513535400b4b3fef0319fb5c4e1f520a7bef743"
dependencies = [
 "crc32fast",
 "miniz_oxide",
]

[[package]]
name = "flume"
version = "0.10.14"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "1657b4441c3403d9f7b3409e47575237dac27b1b5726df654a6ecbf92f0f7577"
dependencies = [
 "futures-core",
 "futures-sink",
 "nanorand",
 "pin-project",
 "spin",
]

[[package]]
name = "futures-core"
version = "0.3.28"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4bca583b7e26f571124fe5b7561d49cb2868d79116cfa0eefce955557c6fee8c"

[[package]]
name = "futures-sink"
version = "0.3.28"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f43be4fe21a13b9781a69afa4985b0f6ee0e1afab2c6f454a8cf30e2b2237b6e"

[[package]]
name = "getrandom"
version = "0.1.16"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8fc3cb4d91f53b50155bdcfd23f6a4c39ae1969c2ae85982b135750cccaf5fce"
dependencies = [
 "cfg-if 1.0.0",
 "libc",
 "wasi 0.9.0+wasi-snapshot-preview1",
]

[[package]]
name = "getrandom"
version = "0.2.10"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "be4136b2a15dd319360be1c07d9933517ccf0be8f16bf62a3bee4f0d618df427"
dependencies = [
 "cfg-if 1.0.0",
 "js-sys",
 "libc",
 "wasi 0.11.0+wasi-snapshot-preview1",
 "wasm-bindgen",
]

[[package]]
name = "gif"
version = "0.12.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "80792593675e051cf94a4b111980da2ba60d4a83e43e0048c5693baab3977045"
dependencies = [
 "color_quant",
 "weezl",
]

[[package]]
name = "glob"
version = "0.3.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d2fabcfbdc87f4758337ca535fb41a6d701b65693ce38287d856d1674551ec9b"

[[package]]
name = "half"
version = "1.8.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "eabb4a44450da02c90444cf74558da904edde8fb4e9035a9a6a4e15445af0bd7"

[[package]]
name = "half"
version = "2.3.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "bc52e53916c08643f1b56ec082790d1e86a32e58dc5268f897f313fbae7b4872"
dependencies = [
 "cfg-if 1.0.0",
 "crunchy",
]

[[package]]
name = "hashbrown"
version = "0.12.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8a9ee70c43aaf417c914396645a0fa852624801b24ebb7ae78fe8272889ac888"

[[package]]
name = "hermit-abi"
version = "0.1.19"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "62b467343b94ba476dcb2500d242dadbb39557df889310ac77c5d99100aaac33"
dependencies = [
 "libc",
]

[[package]]
name = "hermit-abi"
version = "0.3.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "fed44880c466736ef9a5c5b5facefb5ed0785676d0c02d612db14e54f0d84286"

[[package]]
name = "humantime"
version = "1.3.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "df004cfca50ef23c36850aaaa59ad52cc70d0e90243c3c7737a4dd32dc7a3c4f"
dependencies = [
 "quick-error",
]

[[package]]
name = "image"
version = "0.24.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "527909aa81e20ac3a44803521443a765550f09b5130c2c2fa1ea59c2f8f50a3a"
dependencies = [
 "bytemuck",
 "byteorder",
 "color_quant",
 "exr",
 "gif",
 "jpeg-decoder",
 "num-rational",
 "num-traits",
 "png",
 "qoi",
 "tiff",
]

[[package]]
name = "imageproc"
version = "0.23.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b6aee993351d466301a29655d628bfc6f5a35a0d062b6160ca0808f425805fd7"
dependencies = [
 "approx",
 "conv",
 "image",
 "itertools 0.10.5",
 "nalgebra 0.30.1",
 "num",
 "rand 0.7.3",
 "rand_distr",
 "rayon",
 "rusttype",
]

[[package]]
name = "indexmap"
version = "1.9.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "bd070e393353796e801d209ad339e89596eb4c8d430d18ede6a1cced8fafbd99"
dependencies = [
 "autocfg",
 "hashbrown",
]

[[package]]
name = "io-lifetimes"
version = "1.0.11"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "eae7b9aee968036d54dce06cebaefd919e4472e753296daccd6d344e3e2df0c2"
dependencies = [
 "hermit-abi 0.3.1",
 "libc",
 "windows-sys",
]

[[package]]
name = "itertools"
version = "0.10.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b0fd2260e829bddf4cb6ea802289de2f86d6a7a690192fbe91b3f46e0f2c8473"
dependencies = [
 "either",
]

[[package]]
name = "itertools"
version = "0.11.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b1c173a5686ce8bfa551b3563d0c2170bf24ca44da99c7ca4bfdab5418c3fe57"
dependencies = [
 "either",
]

[[package]]
name = "itoa"
version = "1.0.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "453ad9f582a441959e5f0d088b02ce04cfe8d51a8eaf077f12ac6d3e94164ca6"

[[package]]
name = "jobserver"
version = "0.1.26"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "936cfd212a0155903bcbc060e316fb6cc7cbf2e1907329391ebadc1fe0ce77c2"
dependencies = [
 "libc",
]

[[package]]
name = "jpeg-decoder"
version = "0.3.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "bc0000e42512c92e31c2252315bda326620a4e034105e900c98ec492fa077b3e"
dependencies = [
 "rayon",
]

[[package]]
name = "js-sys"
version = "0.3.64"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c5f195fe497f702db0f318b07fdd68edb16955aed830df8363d837542f8f935a"
dependencies = [
 "wasm-bindgen",
]

[[package]]
name = "kdam"
version = "0.3.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "333c30a42347fd0f02d948465848f50116854855c9fc7e77e98f3dd31fc73190"
dependencies = [
 "terminal_size",
 "unicode-segmentation",
]

[[package]]
name = "lazy_static"
version = "1.4.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e2abad23fbc42b3700f2f279844dc832adb2b2eb069b2df918f455c4e18cc646"

[[package]]
name = "lazycell"
version = "1.3.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "830d08ce1d1d941e6b30645f1a0eb5643013d835ce3779a5fc208261dbe10f55"

[[package]]
name = "lebe"
version = "0.5.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "03087c2bad5e1034e8cace5926dec053fb3790248370865f5117a7d0213354c8"

[[package]]
name = "libc"
version = "0.2.147"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b4668fb0ea861c1df094127ac5f1da3409a82116a4ba74fca2e58ef927159bb3"

[[package]]
name = "libloading"
version = "0.7.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b67380fd3b2fbe7527a606e18729d21c6f3951633d0500574c4dc22d2d638b9f"
dependencies = [
 "cfg-if 1.0.0",
 "winapi",
]

[[package]]
name = "linux-raw-sys"
version = "0.3.8"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ef53942eb7bf7ff43a617b3e2c1c4a5ecf5944a7c1bc12d7ee39bbb15e5c1519"

[[package]]
name = "lock_api"
version = "0.4.10"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c1cc9717a20b1bb222f333e6a92fd32f7d8a18ddc5a3191a11af45dcbf4dcd16"
dependencies = [
 "autocfg",
 "scopeguard",
]

[[package]]
name = "log"
version = "0.4.19"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b06a4cde4c0f271a446782e3eff8de789548ce57dbc8eca9292c27f4a42004b4"

[[package]]
name = "matrixmultiply"
version = "0.3.7"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "090126dc04f95dc0d1c1c91f61bdd474b3930ca064c1edc8a849da2c6cbe1e77"
dependencies = [
 "autocfg",
 "rawpointer",
]

[[package]]
name = "maybe-owned"
version = "0.3.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4facc753ae494aeb6e3c22f839b158aebd4f9270f55cd3c79906c45476c47ab4"

[[package]]
name = "memchr"
version = "2.5.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "2dffe52ecf27772e601905b7522cb4ef790d2cc203488bbd0e2fe85fcb74566d"

[[package]]
name = "memoffset"
version = "0.9.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5a634b1c61a95585bd15607c6ab0c4e5b226e695ff2800ba0cdccddf208c406c"
dependencies = [
 "autocfg",
]

[[package]]
name = "miniz_oxide"
version = "0.7.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e7810e0be55b428ada41041c41f32c9f1a42817901b4ccf45fa3d4b6561e74c7"
dependencies = [
 "adler",
 "simd-adler32",
]

[[package]]
name = "nalgebra"
version = "0.30.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4fb2d0de08694bed883320212c18ee3008576bfe8c306f4c3c4a58b4876998be"
dependencies = [
 "approx",
 "matrixmultiply",
 "num-complex",
 "num-rational",
 "num-traits",
 "simba 0.7.3",
 "typenum",
]

[[package]]
name = "nalgebra"
version = "0.32.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d68d47bba83f9e2006d117a9a33af1524e655516b8919caac694427a6fb1e511"
dependencies = [
 "approx",
 "matrixmultiply",
 "nalgebra-macros",
 "num-complex",
 "num-rational",
 "num-traits",
 "simba 0.8.1",
 "typenum",
]

[[package]]
name = "nalgebra-macros"
version = "0.2.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d232c68884c0c99810a5a4d333ef7e47689cfd0edc85efc9e54e1e6bf5212766"
dependencies = [
 "proc-macro2",
 "quote",
 "syn 1.0.109",
]

[[package]]
name = "nanorand"
version = "0.7.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "6a51313c5820b0b02bd422f4b44776fbf47961755c74ce64afc73bfad10226c3"
dependencies = [
 "getrandom 0.2.10",
]

[[package]]
name = "ndarray"
version = "0.15.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "adb12d4e967ec485a5f71c6311fe28158e9d6f4bc4a447b474184d0f91a8fa32"
dependencies = [
 "matrixmultiply",
 "num-complex",
 "num-integer",
 "num-traits",
 "rawpointer",
]

[[package]]
name = "nom"
version = "5.1.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "08959a387a676302eebf4ddbcbc611da04285579f76f88ee0506c63b1a61dd4b"
dependencies = [
 "memchr",
 "version_check",
]

[[package]]
name = "num"
version = "0.4.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "43db66d1170d347f9a065114077f7dccb00c1b9478c89384490a3425279a4606"
dependencies = [
 "num-bigint",
 "num-complex",
 "num-integer",
 "num-iter",
 "num-rational",
 "num-traits",
]

[[package]]
name = "num-bigint"
version = "0.4.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f93ab6289c7b344a8a9f60f88d80aa20032336fe78da341afc91c8a2341fc75f"
dependencies = [
 "autocfg",
 "num-integer",
 "num-traits",
]

[[package]]
name = "num-complex"
version = "0.4.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "02e0d21255c828d6f128a1e41534206671e8c3ea0c62f32291e808dc82cff17d"
dependencies = [
 "num-traits",
]

[[package]]
name = "num-integer"
version = "0.1.45"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "225d3389fb3509a24c93f5c29eb6bde2586b98d9f016636dff58d7c6f7569cd9"
dependencies = [
 "autocfg",
 "num-traits",
]

[[package]]
name = "num-iter"
version = "0.1.43"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7d03e6c028c5dc5cac6e2dec0efda81fc887605bb3d884578bb6d6bf7514e252"
dependencies = [
 "autocfg",
 "num-integer",
 "num-traits",
]

[[package]]
name = "num-rational"
version = "0.4.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "0638a1c9d0a3c0914158145bc76cff373a75a627e6ecbfb71cbe6f453a5a19b0"
dependencies = [
 "autocfg",
 "num-bigint",
 "num-integer",
 "num-traits",
]

[[package]]
name = "num-traits"
version = "0.2.15"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "578ede34cf02f8924ab9447f50c28075b4d3e5b269972345e7e0372b38c6cdcd"
dependencies = [
 "autocfg",
]

[[package]]
name = "num_cpus"
version = "1.16.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4161fcb6d602d4d2081af7c3a45852d875a03dd337a6bfdd6e06407b61342a43"
dependencies = [
 "hermit-abi 0.3.1",
 "libc",
]

[[package]]
name = "once_cell"
version = "1.18.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "dd8b5dd2ae5ed71462c540258bedcb51965123ad7e7ccf4b9a8cafaa4a63576d"

[[package]]
name = "oorandom"
version = "11.1.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "0ab1bc2a289d34bd04a330323ac98a1b4bc82c9d9fcb1e66b63caa84da26b575"

[[package]]
name = "opencv"
version = "0.82.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "79290f5f138b26637cae0ae243d77de871a096e334d3fca22f5ddf31ab6f4cc5"
dependencies = [
 "cc",
 "dunce",
 "jobserver",
 "libc",
 "num-traits",
 "once_cell",
 "opencv-binding-generator",
 "pkg-config",
 "semver",
 "shlex 1.1.0",
 "vcpkg",
]

[[package]]
name = "opencv-binding-generator"
version = "0.66.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "be5f640bda28b478629f525e8525601586a2a2b9403a4b8f2264fa5fcfebe6be"
dependencies = [
 "clang",
 "clang-sys",
 "dunce",
 "once_cell",
 "percent-encoding",
 "regex",
]

[[package]]
name = "os_str_bytes"
version = "6.5.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4d5d9eb14b174ee9aa2ef96dc2b94637a2d4b6e7cb873c7e171f0c20c6cf3eac"

[[package]]
name = "owned_ttf_parser"
version = "0.15.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "05e6affeb1632d6ff6a23d2cd40ffed138e82f1532571a26f527c8a284bb2fbb"
dependencies = [
 "ttf-parser",
]

[[package]]
name = "paste"
version = "1.0.12"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9f746c4065a8fa3fe23974dd82f15431cc8d40779821001404d10d2e79ca7d79"

[[package]]
name = "peeking_take_while"
version = "0.1.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "19b17cddbe7ec3f8bc800887bab5e717348c95ea2ca0b1bf0837fb964dc67099"

[[package]]
name = "percent-encoding"
version = "2.3.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9b2a4787296e9989611394c33f193f676704af1686e70b8f8033ab5ba9a35a94"

[[package]]
name = "pico-args"
version = "0.5.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5be167a7af36ee22fe3115051bc51f6e6c7054c9348e28deb4f49bd6f705a315"

[[package]]
name = "pin-project"
version = "1.1.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c95a7476719eab1e366eaf73d0260af3021184f18177925b07f54b30089ceead"
dependencies = [
 "pin-project-internal",
]

[[package]]
name = "pin-project-internal"
version = "1.1.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "39407670928234ebc5e6e580247dd567ad73a3578460c5990f9503df207e8f07"
dependencies = [
 "proc-macro2",
 "quote",
 "syn 2.0.22",
]

[[package]]
name = "pkg-config"
version = "0.3.27"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "26072860ba924cbfa98ea39c8c19b4dd6a4a25423dbdf219c1eca91aa0cf6964"

[[package]]
name = "plotters"
version = "0.3.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d2c224ba00d7cadd4d5c660deaf2098e5e80e07846537c51f9cfa4be50c1fd45"
dependencies = [
 "num-traits",
 "plotters-backend",
 "plotters-svg",
 "wasm-bindgen",
 "web-sys",
]

[[package]]
name = "plotters-backend"
version = "0.3.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9e76628b4d3a7581389a35d5b6e2139607ad7c75b17aed325f210aa91f4a9609"

[[package]]
name = "plotters-svg"
version = "0.3.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "38f6d39893cca0701371e3c27294f09797214b86f1fb951b89ade8ec04e2abab"
dependencies = [
 "plotters-backend",
]

[[package]]
name = "png"
version = "0.17.9"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "59871cc5b6cce7eaccca5a802b4173377a1c2ba90654246789a8fa2334426d11"
dependencies = [
 "bitflags",
 "crc32fast",
 "fdeflate",
 "flate2",
 "miniz_oxide",
]

[[package]]
name = "ppv-lite86"
version = "0.2.17"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5b40af805b3121feab8a3c29f04d8ad262fa8e0561883e7653e024ae4479e6de"

[[package]]
name = "proc-macro2"
version = "1.0.63"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7b368fba921b0dce7e60f5e04ec15e565b3303972b42bcfde1d0713b881959eb"
dependencies = [
 "unicode-ident",
]

[[package]]
name = "qoi"
version = "0.4.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7f6d64c71eb498fe9eae14ce4ec935c555749aef511cca85b5568910d6e48001"
dependencies = [
 "bytemuck",
]

[[package]]
name = "quick-error"
version = "1.2.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a1d01941d82fa2ab50be1e79e6714289dd7cde78eba4c074bc5a4374f650dfe0"

[[package]]
name = "quote"
version = "1.0.29"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "573015e8ab27661678357f27dc26460738fd2b6c86e46f386fde94cb5d913105"
dependencies = [
 "proc-macro2",
]

[[package]]
name = "rand"
version = "0.7.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "6a6b1679d49b24bbfe0c803429aa1874472f50d9b363131f0e89fc356b544d03"
dependencies = [
 "getrandom 0.1.16",
 "libc",
 "rand_chacha 0.2.2",
 "rand_core 0.5.1",
 "rand_hc",
]

[[package]]
name = "rand"
version = "0.8.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "34af8d1a0e25924bc5b7c43c079c942339d8f0a8b57c39049bef581b46327404"
dependencies = [
 "libc",
 "rand_chacha 0.3.1",
 "rand_core 0.6.4",
]

[[package]]
name = "rand_chacha"
version = "0.2.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f4c8ed856279c9737206bf725bf36935d8666ead7aa69b52be55af369d193402"
dependencies = [
 "ppv-lite86",
 "rand_core 0.5.1",
]

[[package]]
name = "rand_chacha"
version = "0.3.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e6c10a63a0fa32252be49d21e7709d4d4baf8d231c2dbce1eaa8141b9b127d88"
dependencies = [
 "ppv-lite86",
 "rand_core 0.6.4",
]

[[package]]
name = "rand_core"
version = "0.5.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "90bde5296fc891b0cef12a6d03ddccc162ce7b2aff54160af9338f8d40df6d19"
dependencies = [
 "getrandom 0.1.16",
]

[[package]]
name = "rand_core"
version = "0.6.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ec0be4795e2f6a28069bec0b5ff3e2ac9bafc99e6a9a7dc3547996c5c816922c"
dependencies = [
 "getrandom 0.2.10",
]

[[package]]
name = "rand_distr"
version = "0.2.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "96977acbdd3a6576fb1d27391900035bf3863d4a16422973a409b488cf29ffb2"
dependencies = [
 "rand 0.7.3",
]

[[package]]
name = "rand_hc"
version = "0.2.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ca3129af7b92a17112d59ad498c6f81eaf463253766b90396d39ea7a39d6613c"
dependencies = [
 "rand_core 0.5.1",
]

[[package]]
name = "rawpointer"
version = "0.2.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "60a357793950651c4ed0f3f52338f53b2f809f32d83a07f72909fa13e4c6c1e3"

[[package]]
name = "rayon"
version = "1.7.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "1d2df5196e37bcc87abebc0053e20787d73847bb33134a69841207dd0a47f03b"
dependencies = [
 "either",
 "rayon-core",
]

[[package]]
name = "rayon-core"
version = "1.11.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4b8f95bd6966f5c87776639160a66bd8ab9895d9d4ab01ddba9fc60661aebe8d"
dependencies = [
 "crossbeam-channel",
 "crossbeam-deque",
 "crossbeam-utils",
 "num_cpus",
]

[[package]]
name = "reducedemb"
version = "0.1.0"
dependencies = [
 "csv",
 "face",
 "image",
 "itertools 0.11.0",
 "kdam",
 "log",
 "pico-args",
 "rand 0.8.5",
 "serde",
 "serde_json",
]

[[package]]
name = "regex"
version = "1.8.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d0ab3ca65655bb1e41f2a8c8cd662eb4fb035e67c3f78da1d61dffe89d07300f"
dependencies = [
 "aho-corasick 1.0.2",
 "memchr",
 "regex-syntax",
]

[[package]]
name = "regex-syntax"
version = "0.7.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "436b050e76ed2903236f032a59761c1eb99e1b0aead2c257922771dab1fc8c78"

[[package]]
name = "rustc-hash"
version = "1.1.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "08d43f7aa6b08d49f382cde6a7982047c3426db949b1424bc4b7ec9ae12c6ce2"

[[package]]
name = "rustix"
version = "0.37.20"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b96e891d04aa506a6d1f318d2771bcb1c7dfda84e126660ace067c9b474bb2c0"
dependencies = [
 "bitflags",
 "errno",
 "io-lifetimes",
 "libc",
 "linux-raw-sys",
 "windows-sys",
]

[[package]]
name = "rusttype"
version = "0.9.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3ff8374aa04134254b7995b63ad3dc41c7f7236f69528b28553da7d72efaa967"
dependencies = [
 "ab_glyph_rasterizer",
 "owned_ttf_parser",
]

[[package]]
name = "ryu"
version = "1.0.13"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f91339c0467de62360649f8d3e185ca8de4224ff281f66000de5eb2a77a79041"

[[package]]
name = "safe_arch"
version = "0.7.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "62a7484307bd40f8f7ccbacccac730108f2cae119a3b11c74485b48aa9ea650f"
dependencies = [
 "bytemuck",
]

[[package]]
name = "same-file"
version = "1.0.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "93fc1dc3aaa9bfed95e02e6eadabb4baf7e3078b0bd1b4d7b6b0b68378900502"
dependencies = [
 "winapi-util",
]

[[package]]
name = "scopeguard"
version = "1.1.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d29ab0c6d3fc0ee92fe66e2d99f700eab17a8d57d1c1d3b748380fb20baa78cd"

[[package]]
name = "semver"
version = "1.0.17"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "bebd363326d05ec3e2f532ab7660680f3b02130d780c299bca73469d521bc0ed"

[[package]]
name = "serde"
version = "1.0.164"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9e8c8cf938e98f769bc164923b06dce91cea1751522f46f8466461af04c9027d"
dependencies = [
 "serde_derive",
]

[[package]]
name = "serde_derive"
version = "1.0.164"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d9735b638ccc51c28bf6914d90a2e9725b377144fc612c49a611fddd1b631d68"
dependencies = [
 "proc-macro2",
 "quote",
 "syn 2.0.22",
]

[[package]]
name = "serde_json"
version = "1.0.99"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "46266871c240a00b8f503b877622fe33430b3c7d963bdc0f2adc511e54a1eae3"
dependencies = [
 "itoa",
 "ryu",
 "serde",
]

[[package]]
name = "shlex"
version = "0.1.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7fdf1b9db47230893d76faad238fd6097fd6d6a9245cd7a4d90dbd639536bbd2"

[[package]]
name = "shlex"
version = "1.1.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "43b2853a4d09f215c24cc5489c992ce46052d359b5109343cbafbf26bc62f8a3"

[[package]]
name = "simba"
version = "0.7.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "2f3fd720c48c53cace224ae62bef1bbff363a70c68c4802a78b5cc6159618176"
dependencies = [
 "approx",
 "num-complex",
 "num-traits",
 "paste",
 "wide",
]

[[package]]
name = "simba"
version = "0.8.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "061507c94fc6ab4ba1c9a0305018408e312e17c041eb63bef8aa726fa33aceae"
dependencies = [
 "approx",
 "num-complex",
 "num-traits",
 "paste",
 "wide",
]

[[package]]
name = "simd-adler32"
version = "0.3.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "238abfbb77c1915110ad968465608b68e869e0772622c9656714e73e5a1a522f"

[[package]]
name = "smallvec"
version = "1.10.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a507befe795404456341dfab10cef66ead4c041f62b8b11bbb92bffe5d0953e0"

[[package]]
name = "spin"
version = "0.9.8"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "6980e8d7511241f8acf4aebddbb1ff938df5eebe98691418c4468d0b72a96a67"
dependencies = [
 "lock_api",
]

[[package]]
name = "strsim"
version = "0.8.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8ea5119cdb4c55b55d432abb513a0429384878c15dde60cc77b1c99de1a95a6a"

[[package]]
name = "syn"
version = "1.0.109"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "72b64191b275b66ffe2469e8af2c1cfe3bafa67b529ead792a6d0160888b4237"
dependencies = [
 "proc-macro2",
 "quote",
 "unicode-ident",
]

[[package]]
name = "syn"
version = "2.0.22"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "2efbeae7acf4eabd6bcdcbd11c92f45231ddda7539edc7806bd1a04a03b24616"
dependencies = [
 "proc-macro2",
 "quote",
 "unicode-ident",
]

[[package]]
name = "termcolor"
version = "1.2.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "be55cf8942feac5c765c2c993422806843c9a9a45d4d5c407ad6dd2ea95eb9b6"
dependencies = [
 "winapi-util",
]

[[package]]
name = "terminal_size"
version = "0.2.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8e6bf6f19e9f8ed8d4048dc22981458ebcf406d67e94cd422e5ecd73d63b3237"
dependencies = [
 "rustix",
 "windows-sys",
]

[[package]]
name = "textwrap"
version = "0.11.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d326610f408c7a4eb6f51c37c330e496b08506c9457c9d34287ecc38809fb060"
dependencies = [
 "unicode-width",
]

[[package]]
name = "textwrap"
version = "0.16.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "222a222a5bfe1bba4a77b45ec488a741b3cb8872e5e499451fd7d0129c9c7c3d"

[[package]]
name = "tflite"
version = "0.9.6"
source = "git+https://github.com/p-hofer/tflite-rs#728c0054ad93b664d082086b17666fd308aa947e"
dependencies = [
 "bindgen",
 "cpp",
 "cpp_build",
 "libc",
 "maybe-owned",
 "thiserror",
]

[[package]]
name = "thiserror"
version = "1.0.40"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "978c9a314bd8dc99be594bc3c175faaa9794be04a5a5e153caba6915336cebac"
dependencies = [
 "thiserror-impl",
]

[[package]]
name = "thiserror-impl"
version = "1.0.40"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f9456a42c5b0d803c8cd86e73dd7cc9edd429499f37a3550d286d5e86720569f"
dependencies = [
 "proc-macro2",
 "quote",
 "syn 2.0.22",
]

[[package]]
name = "tiff"
version = "0.8.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7449334f9ff2baf290d55d73983a7d6fa15e01198faef72af07e2a8db851e471"
dependencies = [
 "flate2",
 "jpeg-decoder",
 "weezl",
]

[[package]]
name = "tinytemplate"
version = "1.2.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "be4d6b5f19ff7664e8c98d03e2139cb510db9b0a60b55f8e8709b689d939b6bc"
dependencies = [
 "serde",
 "serde_json",
]

[[package]]
name = "ttf-parser"
version = "0.15.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7b3e06c9b9d80ed6b745c7159c40b311ad2916abb34a49e9be2653b90db0d8dd"

[[package]]
name = "typenum"
version = "1.16.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "497961ef93d974e23eb6f433eb5fe1b7930b659f06d12dec6fc44a8f554c0bba"

[[package]]
name = "unicode-ident"
version = "1.0.9"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b15811caf2415fb889178633e7724bad2509101cde276048e013b9def5e51fa0"

[[package]]
name = "unicode-segmentation"
version = "1.10.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "1dd624098567895118886609431a7c3b8f516e41d30e0643f03d94592a147e36"

[[package]]
name = "unicode-width"
version = "0.1.10"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c0edd1e5b14653f783770bce4a4dabb4a5108a5370a5f5d8cfe8710c361f6c8b"

[[package]]
name = "unicode-xid"
version = "0.2.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f962df74c8c05a667b5ee8bcf162993134c104e96440b663c8daa176dc772d8c"

[[package]]
name = "vcpkg"
version = "0.2.15"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "accd4ea62f7bb7a82fe23066fb0957d48ef677f6eeb8215f372f52e48bb32426"

[[package]]
name = "vec_map"
version = "0.8.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f1bddf1187be692e79c5ffeab891132dfb0f236ed36a43c7ed39f1165ee20191"

[[package]]
name = "version_check"
version = "0.9.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "49874b5167b65d7193b8aba1567f5c7d93d001cafc34600cee003eda787e483f"

[[package]]
name = "walkdir"
version = "2.3.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "36df944cda56c7d8d8b7496af378e6b16de9284591917d307c9b4d313c44e698"
dependencies = [
 "same-file",
 "winapi-util",
]

[[package]]
name = "wasi"
version = "0.9.0+wasi-snapshot-preview1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "cccddf32554fecc6acb585f82a32a72e28b48f8c4c1883ddfeeeaa96f7d8e519"

[[package]]
name = "wasi"
version = "0.11.0+wasi-snapshot-preview1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9c8d87e72b64a3b4db28d11ce29237c246188f4f51057d65a7eab63b7987e423"

[[package]]
name = "wasm-bindgen"
version = "0.2.87"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7706a72ab36d8cb1f80ffbf0e071533974a60d0a308d01a5d0375bf60499a342"
dependencies = [
 "cfg-if 1.0.0",
 "wasm-bindgen-macro",
]

[[package]]
name = "wasm-bindgen-backend"
version = "0.2.87"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5ef2b6d3c510e9625e5fe6f509ab07d66a760f0885d858736483c32ed7809abd"
dependencies = [
 "bumpalo",
 "log",
 "once_cell",
 "proc-macro2",
 "quote",
 "syn 2.0.22",
 "wasm-bindgen-shared",
]

[[package]]
name = "wasm-bindgen-macro"
version = "0.2.87"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "dee495e55982a3bd48105a7b947fd2a9b4a8ae3010041b9e0faab3f9cd028f1d"
dependencies = [
 "quote",
 "wasm-bindgen-macro-support",
]

[[package]]
name = "wasm-bindgen-macro-support"
version = "0.2.87"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "54681b18a46765f095758388f2d0cf16eb8d4169b639ab575a8f5693af210c7b"
dependencies = [
 "proc-macro2",
 "quote",
 "syn 2.0.22",
 "wasm-bindgen-backend",
 "wasm-bindgen-shared",
]

[[package]]
name = "wasm-bindgen-shared"
version = "0.2.87"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ca6ad05a4870b2bf5fe995117d3728437bd27d7cd5f06f13c17443ef369775a1"

[[package]]
name = "web-sys"
version = "0.3.64"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9b85cbef8c220a6abc02aefd892dfc0fc23afb1c6a426316ec33253a3877249b"
dependencies = [
 "js-sys",
 "wasm-bindgen",
]

[[package]]
name = "weezl"
version = "0.1.7"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9193164d4de03a926d909d3bc7c30543cecb35400c02114792c2cae20d5e2dbb"

[[package]]
name = "which"
version = "3.1.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d011071ae14a2f6671d0b74080ae0cd8ebf3a6f8c9589a2cd45f23126fe29724"
dependencies = [
 "libc",
]

[[package]]
name = "wide"
version = "0.7.10"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "40018623e2dba2602a9790faba8d33f2ebdebf4b86561b83928db735f8784728"
dependencies = [
 "bytemuck",
 "safe_arch",
]

[[package]]
name = "winapi"
version = "0.3.9"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5c839a674fcd7a98952e593242ea400abe93992746761e38641405d28b00f419"
dependencies = [
 "winapi-i686-pc-windows-gnu",
 "winapi-x86_64-pc-windows-gnu",
]

[[package]]
name = "winapi-i686-pc-windows-gnu"
version = "0.4.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ac3b87c63620426dd9b991e5ce0329eff545bccbbb34f3be09ff6fb6ab51b7b6"

[[package]]
name = "winapi-util"
version = "0.1.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "70ec6ce85bb158151cae5e5c87f95a8e97d2c0c4b001223f33a334e3ce5de178"
dependencies = [
 "winapi",
]

[[package]]
name = "winapi-x86_64-pc-windows-gnu"
version = "0.4.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "712e227841d057c1ee1cd2fb22fa7e5a5461ae8e48fa2ca79ec42cfc1931183f"

[[package]]
name = "windows-sys"
version = "0.48.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "677d2418bec65e3338edb076e806bc1ec15693c5d0104683f2efe857f61056a9"
dependencies = [
 "windows-targets",
]

[[package]]
name = "windows-targets"
version = "0.48.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "05d4b17490f70499f20b9e791dcf6a299785ce8af4d709018206dc5b4953e95f"
dependencies = [
 "windows_aarch64_gnullvm",
 "windows_aarch64_msvc",
 "windows_i686_gnu",
 "windows_i686_msvc",
 "windows_x86_64_gnu",
 "windows_x86_64_gnullvm",
 "windows_x86_64_msvc",
]

[[package]]
name = "windows_aarch64_gnullvm"
version = "0.48.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "91ae572e1b79dba883e0d315474df7305d12f569b400fcf90581b06062f7e1bc"

[[package]]
name = "windows_aarch64_msvc"
version = "0.48.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b2ef27e0d7bdfcfc7b868b317c1d32c641a6fe4629c171b8928c7b08d98d7cf3"

[[package]]
name = "windows_i686_gnu"
version = "0.48.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "622a1962a7db830d6fd0a69683c80a18fda201879f0f447f065a3b7467daa241"

[[package]]
name = "windows_i686_msvc"
version = "0.48.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4542c6e364ce21bf45d69fdd2a8e455fa38d316158cfd43b3ac1c5b1b19f8e00"

[[package]]
name = "windows_x86_64_gnu"
version = "0.48.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ca2b8a661f7628cbd23440e50b05d705db3686f894fc9580820623656af974b1"

[[package]]
name = "windows_x86_64_gnullvm"
version = "0.48.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7896dbc1f41e08872e9d5e8f8baa8fdd2677f29468c4e156210174edc7f7b953"

[[package]]
name = "windows_x86_64_msvc"
version = "0.48.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "1a515f5799fe4961cb532f983ce2b23082366b898e52ffbce459c86f67c8378a"

[[package]]
name = "zune-inflate"
version = "0.2.54"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "73ab332fe2f6680068f3582b16a24f90ad7096d5d39b974d1c0aff0125116f02"
dependencies = [
 "simd-adler32",
]

reduced-embeddings-analysis-icprs/Cargo.toml

[package]
name = "reducedemb"
version = "0.1.0"
edition = "2021"

See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html

[dependencies]
face = { git = "https://git.ins.jku.at/proj/digidow/face-lib.git" }
csv = "1.1"
serde = {version="1.0", features=["derive"]}
serde_json = "1.0"
kdam = "0.3"
log = "0.4"
image = "0.24.5"
rand = "0.8"
itertools = "0.11"
pico-args = "0.5"

reduced-embeddings-analysis-icprs/flake.lock

{
 "nodes": {
 "mozpkgs": {
 "flake": false,
 "locked": {
 "lastModified": 1687771476,
 "narHash": "sha256-TSpqz6qYVRoqkEdOCawEQ4/cWt/4pracmvw17HK1tgE=",
 "owner": "mozilla",
 "repo": "nixpkgs-mozilla",
 "rev": "3a44b8783514e7d6db4b63df96071b6c2b014b07",
 "type": "github"
 },
 "original": {
 "owner": "mozilla",
 "repo": "nixpkgs-mozilla",
 "type": "github"
 }
 },
 "naersk": {
 "inputs": {
 "nixpkgs": "nixpkgs"
 },
 "locked": {
 "lastModified": 1687852486,
 "narHash": "sha256-2rXkhKUVQxbVaC+TITPpILiy/dSbordOLs87eoWHYxA=",
 "owner": "nmattia",
 "repo": "naersk",
 "rev": "df10963b956962913b693a638746a95d6c506404",
 "type": "github"
 },
 "original": {
 "owner": "nmattia",
 "repo": "naersk",
 "type": "github"
 }
 },
 "nixpkgs": {
 "locked": {
 "lastModified": 1687886075,
 "narHash": "sha256-PeayJDDDy+uw1Ats4moZnRdL1OFuZm1Tj+KiHlD67+o=",
 "owner": "NixOS",
 "repo": "nixpkgs",
 "rev": "a565059a348422af5af9026b5174dc5c0dcefdae",
 "type": "github"
 },
 "original": {
 "id": "nixpkgs",
 "type": "indirect"
 }
 },
 "nixpkgs-flatbuffers": {
 "locked": {
 "lastModified": 1650308445,
 "narHash": "sha256-3muuhz3fjtF1bz32UXOYCho51E8JSeEwo2iDZFQJdXo=",
 "owner": "nixOS",
 "repo": "nixpkgs",
 "rev": "d1c3fea7ecbed758168787fe4e4a3157e52bc808",
 "type": "github"
 },
 "original": {
 "owner": "nixOS",
 "repo": "nixpkgs",
 "rev": "d1c3fea7ecbed758168787fe4e4a3157e52bc808",
 "type": "github"
 }
 },
 "nixpkgs_2": {
 "locked": {
 "lastModified": 1686519857,
 "narHash": "sha256-VkBhuq67aXXiCoEmicziuDLUPPjeOTLQoj6OeVai5zM=",
 "owner": "nixOS",
 "repo": "nixpkgs",
 "rev": "6b1b72c0f887a478a5aac355674ff6df0fc44f44",
 "type": "github"
 },
 "original": {
 "owner": "nixOS",
 "repo": "nixpkgs",
 "rev": "6b1b72c0f887a478a5aac355674ff6df0fc44f44",
 "type": "github"
 }
 },
 "root": {
 "inputs": {
 "mozpkgs": "mozpkgs",
 "naersk": "naersk",
 "nixpkgs": "nixpkgs_2",
 "nixpkgs-flatbuffers": "nixpkgs-flatbuffers",
 "utils": "utils"
 }
 },
 "systems": {
 "locked": {
 "lastModified": 1681028828,
 "narHash": "sha256-Vy1rq5AaRuLzOxct8nz4T6wlgyUR7zLU309k9mBC768=",
 "owner": "nix-systems",
 "repo": "default",
 "rev": "da67096a3b9bf56a91d16901293e51ba5b49a27e",
 "type": "github"
 },
 "original": {
 "owner": "nix-systems",
 "repo": "default",
 "type": "github"
 }
 },
 "utils": {
 "inputs": {
 "systems": "systems"
 },
 "locked": {
 "lastModified": 1687709756,
 "narHash": "sha256-Y5wKlQSkgEK2weWdOu4J3riRd+kV/VCgHsqLNTTWQ/0=",
 "owner": "numtide",
 "repo": "flake-utils",
 "rev": "dbabf0ca0c0c4bce6ea5eaf65af5cb694d2082c7",
 "type": "github"
 },
 "original": {
 "owner": "numtide",
 "repo": "flake-utils",
 "type": "github"
 }
 }
 },
 "root": "root",
 "version": 7
}

sensor/flake.nix

{
 inputs = {
 fenix = {
 url = github:nix-community/fenix;
 inputs.nixpkgs.follows = "nixpkgs";
 };
 naersk = {
 url = "github:nix-community/naersk";
 };
 nix-filter.url = "github:numtide/nix-filter";
 nixpkgs = {
 url = "github:nixOS/nixpkgs/6b1b72c0f887a478a5aac355674ff6df0fc44f44";
 };
 nixpkgs-flatbuffers = {
 url = "github:nixOS/nixpkgs/d1c3fea7ecbed758168787fe4e4a3157e52bc808";
 };
 utils = {
 url = "github:numtide/flake-utils";
 };
 };

 outputs = { self, fenix, naersk, nix-filter, nixpkgs, nixpkgs-flatbuffers, utils }:
 utils.lib.eachDefaultSystem (system:
 let
 #static-target = "x86_64-unknown-linux-gnu"; # fix this
 pkgs = import nixpkgs { inherit system; };
 attributeUtils = pkgs.lib.attrsets;

 flatbuffers = (import nixpkgs-flatbuffers { inherit system; }).flatbuffers;
 fixed-tensorflow-lite = (pkgs.tensorflow-lite
 .override { inherit flatbuffers; })
 .overrideAttrs (self: super: { meta.knownVulnerabilities = []; }
);

 stdenv = pkgs.clangStdenv;

 toolchainSpec = {
 date = "2024-02-08";
 channel = "stable";
 sha256 = "sha256-e4mlaJehWBymYxJGgnbuCObVlqMlQSilZ8FljG9zPHY=";
 };

 toolchain = with fenix.packages.${system};
 combine [
	 ((toolchainOf toolchainSpec).withComponents [
 "rustc"
 "cargo"
 "rustfmt"
])
 targets.aarch64-unknown-linux-gnu.latest.rust-std
 targets.x86_64-unknown-linux-gnu.latest.rust-std
 #targets.aarch64-unknown-linux-musl.latest.rust-std
 #targets.x86_64-unknown-linux-musl.latest.rust-std
];

 naersk-lib = pkgs.callPackage naersk {
 cargo = toolchain;
 rustc = toolchain;
 };
 filter = nix-filter.lib;
 pname = "sensor";
 in {

 defaultPackage = naersk-lib.buildPackage {
 name = pname;
 version = "0.1.0";
 root = ./.;
 src = filter {
 root = ./.;
 exclude = [
 ./.gitignore
 ./.gitlab-ci.yml
 ./static/configs
 ./static/detection
 ./static/recognition
 (filter.matchExt ".nix")
];
 };
 doCheck = true; # run the tests (nix logs to view output logs)
 LIBCLANG_PATH="${pkgs.libclang.lib}/lib";
	#CARGO_BUILD_TARGET = static-target;
 #CARGO_BUILD_RUSTFLAGS = "-C target-feature=+crt-static";
 TFLITE_X86_64_LIB_DIR="${fixed-tensorflow-lite}/lib";
 TFLITE_LIB_DIR="${fixed-tensorflow-lite}/lib";
 RUST_BACKTRACE=1;
 gitSubmodules = true;
 #singleStep = true;
 preConfigure = ''
 # Set C flags for Rust's bindgen program. Unlike ordinary C
 # compilation, bindgen does not invoke $CC directly. Instead it
 # uses LLVM's libclang. To make sure all necessary flags are
 # included we need to look in a few places.
 # TODO: generalize this process for other use-cases.
 export BINDGEN_EXTRA_CLANG_ARGS="$(< ${stdenv.cc}/nix-support/libc-crt1-cflags) \
 $(< ${stdenv.cc}/nix-support/libc-cflags) \
 $(< ${stdenv.cc}/nix-support/cc-cflags) \
 $(< ${stdenv.cc}/nix-support/libcxx-cxxflags) \
 ${pkgs.lib.optionalString stdenv.cc.isClang "-idirafter ${stdenv.cc.cc}/lib/clang/${pkgs.lib.getVersion stdenv.cc.cc}/include"} \
 ${pkgs.lib.optionalString stdenv.cc.isGNU "-isystem ${stdenv.cc.cc}/include/c++/${pkgs.lib.getVersion stdenv.cc.cc} -isystem ${stdenv.cc.cc}/include/c++/${pkgs.lib.getVersion stdenv.cc.cc}/${stdenv.hostPlatform.config} -idirafter ${stdenv.cc.cc}/lib/gcc/${stdenv.hostPlatform.config}/${pkgs.lib.getVersion stdenv.cc.cc}/include"}
 "
 '';
	# wrap binary to set envionment variables
 # see also https://github.com/jD91mZM2/termplay/blob/master/flake.nix
 # and the termplay nixpkgs package
 overrideMain = (_: {
 postInstall = ''
 wrapProgram $out/bin/sensor --prefix GST_PLUGIN_SYSTEM_PATH_1_0 : "$GST_PLUGIN_SYSTEM_PATH_1_0"
 '';
 });

 buildInputs = with pkgs.gst_all_1; [gstreamer gst-plugins-base gst-plugins-good gst-plugins-bad gst-libav] ++ (with pkgs; [
 vtk
 opencv
 fixed-tensorflow-lite
 openssl.dev
]);
 nativeBuildInputs = with pkgs; [
 #breakpointHook
 #pkgsStatic.stdenv.cc
 stdenv.cc
 libclang
 pkgconfig
	 toolchain
	 makeWrapper
];
 };
 });
}

sensor/.gitignore

target/
.vscode/
result

sensor/sensor.service

install this as ~/.config/systemd/user/sensor.service for the user under which the binary is supposed to run
after installing, enable with
systemctl --user daemon-reload
systemctl --user start sensor
systemctl --user enable sensor
loginctl enable-linger
and get log output with
journalctl --user --user-unit sensor

[Unit]
Description=Digidow Sensor

[Service]
these two should only be set when running under root systemd, and not within a user systemd service set (otherwise a 216/GROUP error will occur)
#User=user
#Group=user
adapt these directories and path to the local installation
WorkingDirectory=/home/user/sensor
ExecStart=/home/user/sensor/target/release/sensor -s static/configs/<cfg_file>.json
Restart=always
RestartSec=10
Environment=RUST_LOG=INFO

[Install]
WantedBy=multi-user.target

sensor/src/faceloc.rs

sensor/src/lib.rs

sensor/src/face.rs

sensor/src/main.rs

sensor/src/config.rs

sensor/src/pipeline.rs

sensor/.gitlab-ci.yml

default:
 tags:
 - nix-container-shell

stages:
 - build
 - verify

nix-build:
 stage: build
 script:
 - nix build --print-build-logs
 - sha256sum result/bin/sensor
 artifacts:
 untracked: true
 paths:
 - result/bin/sensor
 expire_in: 1 week

nix-verify:
 stage: verify
 needs: [nix-build]
 script:
 - nix build --print-build-logs --rebuild --keep-failed
 artifacts:
 paths:
 - result/bin/sensor
 expire_in: 6 months

sensor/LICENSE

 EUROPEAN UNION PUBLIC LICENCE v. 1.2
 EUPL © the European Union 2007, 2016

This European Union Public Licence (the ‘EUPL’) applies to the Work (as defined
below) which is provided under the terms of this Licence. Any use of the Work,
other than as authorised under this Licence is prohibited (to the extent such
use is covered by a right of the copyright holder of the Work).

The Work is provided under the terms of this Licence when the Licensor (as
defined below) has placed the following notice immediately following the
copyright notice for the Work:

 Licensed under the EUPL

or has expressed by any other means his willingness to license under the EUPL.

1. Definitions

In this Licence, the following terms have the following meaning:

- ‘The Licence’: this Licence.

- ‘The Original Work’: the work or software distributed or communicated by the
 Licensor under this Licence, available as Source Code and also as Executable
 Code as the case may be.

- ‘Derivative Works’: the works or software that could be created by the
 Licensee, based upon the Original Work or modifications thereof. This Licence
 does not define the extent of modification or dependence on the Original Work
 required in order to classify a work as a Derivative Work; this extent is
 determined by copyright law applicable in the country mentioned in Article 15.

- ‘The Work’: the Original Work or its Derivative Works.

- ‘The Source Code’: the human-readable form of the Work which is the most
 convenient for people to study and modify.

- ‘The Executable Code’: any code which has generally been compiled and which is
 meant to be interpreted by a computer as a program.

- ‘The Licensor’: the natural or legal person that distributes or communicates
 the Work under the Licence.

- ‘Contributor(s)’: any natural or legal person who modifies the Work under the
 Licence, or otherwise contributes to the creation of a Derivative Work.

- ‘The Licensee’ or ‘You’: any natural or legal person who makes any usage of
 the Work under the terms of the Licence.

- ‘Distribution’ or ‘Communication’: any act of selling, giving, lending,
 renting, distributing, communicating, transmitting, or otherwise making
 available, online or offline, copies of the Work or providing access to its
 essential functionalities at the disposal of any other natural or legal
 person.

2. Scope of the rights granted by the Licence

The Licensor hereby grants You a worldwide, royalty-free, non-exclusive,
sublicensable licence to do the following, for the duration of copyright vested
in the Original Work:

- use the Work in any circumstance and for all usage,
- reproduce the Work,
- modify the Work, and make Derivative Works based upon the Work,
- communicate to the public, including the right to make available or display
 the Work or copies thereof to the public and perform publicly, as the case may
 be, the Work,
- distribute the Work or copies thereof,
- lend and rent the Work or copies thereof,
- sublicense rights in the Work or copies thereof.

Those rights can be exercised on any media, supports and formats, whether now
known or later invented, as far as the applicable law permits so.

In the countries where moral rights apply, the Licensor waives his right to
exercise his moral right to the extent allowed by law in order to make effective
the licence of the economic rights here above listed.

The Licensor grants to the Licensee royalty-free, non-exclusive usage rights to
any patents held by the Licensor, to the extent necessary to make use of the
rights granted on the Work under this Licence.

3. Communication of the Source Code

The Licensor may provide the Work either in its Source Code form, or as
Executable Code. If the Work is provided as Executable Code, the Licensor
provides in addition a machine-readable copy of the Source Code of the Work
along with each copy of the Work that the Licensor distributes or indicates, in
a notice following the copyright notice attached to the Work, a repository where
the Source Code is easily and freely accessible for as long as the Licensor
continues to distribute or communicate the Work.

4. Limitations on copyright

Nothing in this Licence is intended to deprive the Licensee of the benefits from
any exception or limitation to the exclusive rights of the rights owners in the
Work, of the exhaustion of those rights or of other applicable limitations
thereto.

5. Obligations of the Licensee

The grant of the rights mentioned above is subject to some restrictions and
obligations imposed on the Licensee. Those obligations are the following:

Attribution right: The Licensee shall keep intact all copyright, patent or
trademarks notices and all notices that refer to the Licence and to the
disclaimer of warranties. The Licensee must include a copy of such notices and a
copy of the Licence with every copy of the Work he/she distributes or
communicates. The Licensee must cause any Derivative Work to carry prominent
notices stating that the Work has been modified and the date of modification.

Copyleft clause: If the Licensee distributes or communicates copies of the
Original Works or Derivative Works, this Distribution or Communication will be
done under the terms of this Licence or of a later version of this Licence
unless the Original Work is expressly distributed only under this version of the
Licence — for example by communicating ‘EUPL v. 1.2 only’. The Licensee
(becoming Licensor) cannot offer or impose any additional terms or conditions on
the Work or Derivative Work that alter or restrict the terms of the Licence.

Compatibility clause: If the Licensee Distributes or Communicates Derivative
Works or copies thereof based upon both the Work and another work licensed under
a Compatible Licence, this Distribution or Communication can be done under the
terms of this Compatible Licence. For the sake of this clause, ‘Compatible
Licence’ refers to the licences listed in the appendix attached to this Licence.
Should the Licensee's obligations under the Compatible Licence conflict with
his/her obligations under this Licence, the obligations of the Compatible
Licence shall prevail.

Provision of Source Code: When distributing or communicating copies of the Work,
the Licensee will provide a machine-readable copy of the Source Code or indicate
a repository where this Source will be easily and freely available for as long
as the Licensee continues to distribute or communicate the Work.

Legal Protection: This Licence does not grant permission to use the trade names,
trademarks, service marks, or names of the Licensor, except as required for
reasonable and customary use in describing the origin of the Work and
reproducing the content of the copyright notice.

6. Chain of Authorship

The original Licensor warrants that the copyright in the Original Work granted
hereunder is owned by him/her or licensed to him/her and that he/she has the
power and authority to grant the Licence.

Each Contributor warrants that the copyright in the modifications he/she brings
to the Work are owned by him/her or licensed to him/her and that he/she has the
power and authority to grant the Licence.

Each time You accept the Licence, the original Licensor and subsequent
Contributors grant You a licence to their contributions to the Work, under the
terms of this Licence.

7. Disclaimer of Warranty

The Work is a work in progress, which is continuously improved by numerous
Contributors. It is not a finished work and may therefore contain defects or
‘bugs’ inherent to this type of development.

For the above reason, the Work is provided under the Licence on an ‘as is’ basis
and without warranties of any kind concerning the Work, including without
limitation merchantability, fitness for a particular purpose, absence of defects
or errors, accuracy, non-infringement of intellectual property rights other than
copyright as stated in Article 6 of this Licence.

This disclaimer of warranty is an essential part of the Licence and a condition
for the grant of any rights to the Work.

8. Disclaimer of Liability

Except in the cases of wilful misconduct or damages directly caused to natural
persons, the Licensor will in no event be liable for any direct or indirect,
material or moral, damages of any kind, arising out of the Licence or of the use
of the Work, including without limitation, damages for loss of goodwill, work
stoppage, computer failure or malfunction, loss of data or any commercial
damage, even if the Licensor has been advised of the possibility of such damage.
However, the Licensor will be liable under statutory product liability laws as
far such laws apply to the Work.

9. Additional agreements

While distributing the Work, You may choose to conclude an additional agreement,
defining obligations or services consistent with this Licence. However, if
accepting obligations, You may act only on your own behalf and on your sole
responsibility, not on behalf of the original Licensor or any other Contributor,
and only if You agree to indemnify, defend, and hold each Contributor harmless
for any liability incurred by, or claims asserted against such Contributor by
the fact You have accepted any warranty or additional liability.

10. Acceptance of the Licence

The provisions of this Licence can be accepted by clicking on an icon ‘I agree’
placed under the bottom of a window displaying the text of this Licence or by
affirming consent in any other similar way, in accordance with the rules of
applicable law. Clicking on that icon indicates your clear and irrevocable
acceptance of this Licence and all of its terms and conditions.

Similarly, you irrevocably accept this Licence and all of its terms and
conditions by exercising any rights granted to You by Article 2 of this Licence,
such as the use of the Work, the creation by You of a Derivative Work or the
Distribution or Communication by You of the Work or copies thereof.

11. Information to the public

In case of any Distribution or Communication of the Work by means of electronic
communication by You (for example, by offering to download the Work from a
remote location) the distribution channel or media (for example, a website) must
at least provide to the public the information requested by the applicable law
regarding the Licensor, the Licence and the way it may be accessible, concluded,
stored and reproduced by the Licensee.

12. Termination of the Licence

The Licence and the rights granted hereunder will terminate automatically upon
any breach by the Licensee of the terms of the Licence.

Such a termination will not terminate the licences of any person who has
received the Work from the Licensee under the Licence, provided such persons
remain in full compliance with the Licence.

13. Miscellaneous

Without prejudice of Article 9 above, the Licence represents the complete
agreement between the Parties as to the Work.

If any provision of the Licence is invalid or unenforceable under applicable
law, this will not affect the validity or enforceability of the Licence as a
whole. Such provision will be construed or reformed so as necessary to make it
valid and enforceable.

The European Commission may publish other linguistic versions or new versions of
this Licence or updated versions of the Appendix, so far this is required and
reasonable, without reducing the scope of the rights granted by the Licence. New
versions of the Licence will be published with a unique version number.

All linguistic versions of this Licence, approved by the European Commission,
have identical value. Parties can take advantage of the linguistic version of
their choice.

14. Jurisdiction

Without prejudice to specific agreement between parties,

- any litigation resulting from the interpretation of this License, arising
 between the European Union institutions, bodies, offices or agencies, as a
 Licensor, and any Licensee, will be subject to the jurisdiction of the Court
 of Justice of the European Union, as laid down in article 272 of the Treaty on
 the Functioning of the European Union,

- any litigation arising between other parties and resulting from the
 interpretation of this License, will be subject to the exclusive jurisdiction
 of the competent court where the Licensor resides or conducts its primary
 business.

15. Applicable Law

Without prejudice to specific agreement between parties,

- this Licence shall be governed by the law of the European Union Member State
 where the Licensor has his seat, resides or has his registered office,

- this licence shall be governed by Belgian law if the Licensor has no seat,
 residence or registered office inside a European Union Member State.

Appendix

‘Compatible Licences’ according to Article 5 EUPL are:

- GNU General Public License (GPL) v. 2, v. 3
- GNU Affero General Public License (AGPL) v. 3
- Open Software License (OSL) v. 2.1, v. 3.0
- Eclipse Public License (EPL) v. 1.0
- CeCILL v. 2.0, v. 2.1
- Mozilla Public Licence (MPL) v. 2
- GNU Lesser General Public Licence (LGPL) v. 2.1, v. 3
- Creative Commons Attribution-ShareAlike v. 3.0 Unported (CC BY-SA 3.0) for
 works other than software
- European Union Public Licence (EUPL) v. 1.1, v. 1.2
- Québec Free and Open-Source Licence — Reciprocity (LiLiQ-R) or Strong
 Reciprocity (LiLiQ-R+).

The European Commission may update this Appendix to later versions of the above
licences without producing a new version of the EUPL, as long as they provide
the rights granted in Article 2 of this Licence and protect the covered Source
Code from exclusive appropriation.

All other changes or additions to this Appendix require the production of a new
EUPL version.

sensor/README.md

Digidow Face Sensor

This binary is used as face recognition sensor in our [Digidow prototype](https://www.digidow.eu/experiments/face-recognition-on-campus/). This Rust-based binary leverages [face-lib](https://git.ins.jku.at/proj/digidow/face-lib) for facial detection and recognition functionalities, and [sensor-lib](https://git.ins.jku.at/proj/digidow/sensor-lib) for sensor-specific configurations within the Digidow ecosystem.

Features

- `faceloc`: Support for face localization in 3D space.
- `tor`: Support for creating an onion service to connect to the API.
- `save_images_on_sensor_push`: Saves all images when a sensor push happened.
- `debug_vis`: Stores all images (e.g. to test gstreamer string).

Getting Started

- Clone the repository and navigate to the project directory
- Build the project using the provided nix flake: `nix build`
- Execute the compiled binary to start the face sensor: `./result/release/sensor --config ./path/to/config`

Documentation

For further details regarding the implementation and API references, please refer to the Rust docs (`cargo docs --open`).

Acknowledgements

This work has been carried out within the scope of Digidow, the Christian Doppler Laboratory for Private Digital Authentication in the Physical World. We gratefully acknowledge financial support by the Austrian Federal Ministry of Labour and Economy, the National Foundation for Research, Technology and Development, the Christian Doppler Research Association, 3 Banken IT GmbH, ekey biometric systems GmbH, Kepler Universitätsklinikum GmbH, NXP Semiconductors Austria GmbH & Co KG, and Österreichische Staatsdruckerei GmbH.

LICENSE

Licensed under the EUPL, Version 1.2 or – as soon they will be approved by
the European Commission - subsequent versions of the EUPL (the "Licence").
You may not use this work except in compliance with the Licence.

License: [European Union Public License v1.2](https://joinup.ec.europa.eu/software/page/eupl)

sensor/Cargo.lock

This file is automatically @generated by Cargo.
It is not intended for manual editing.
version = 3

[[package]]
name = "ab_glyph_rasterizer"
version = "0.1.8"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c71b1793ee61086797f5c80b6efa2b8ffa6d5dd703f118545808a7f2e27f7046"

[[package]]
name = "addr2line"
version = "0.21.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8a30b2e23b9e17a9f90641c7ab1549cd9b44f296d3ccbf309d2863cfe398a0cb"
dependencies = [
 "gimli",
]

[[package]]
name = "adler"
version = "1.0.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f26201604c87b1e01bd3d98f8d5d9a8fcbb815e8cedb41ffccbeb4bf593a35fe"

[[package]]
name = "aho-corasick"
version = "1.1.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8e60d3430d3a69478ad0993f19238d2df97c507009a52b3c10addcd7f6bcb916"
dependencies = [
 "memchr",
]

[[package]]
name = "android-tzdata"
version = "0.1.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e999941b234f3131b00bc13c22d06e8c5ff726d1b6318ac7eb276997bbb4fef0"

[[package]]
name = "android_system_properties"
version = "0.1.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "819e7219dbd41043ac279b19830f2efc897156490d7fd6ea916720117ee66311"
dependencies = [
 "libc",
]

[[package]]
name = "anes"
version = "0.1.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4b46cbb362ab8752921c97e041f5e366ee6297bd428a31275b9fcf1e380f7299"

[[package]]
name = "ansi_term"
version = "0.12.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d52a9bb7ec0cf484c551830a7ce27bd20d67eac647e1befb56b0be4ee39a55d2"
dependencies = [
 "winapi",
]

[[package]]
name = "anstream"
version = "0.6.13"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d96bd03f33fe50a863e394ee9718a706f988b9079b20c3784fb726e7678b62fb"
dependencies = [
 "anstyle",
 "anstyle-parse",
 "anstyle-query",
 "anstyle-wincon",
 "colorchoice",
 "utf8parse",
]

[[package]]
name = "anstyle"
version = "1.0.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8901269c6307e8d93993578286ac0edf7f195079ffff5ebdeea6a59ffb7e36bc"

[[package]]
name = "anstyle-parse"
version = "0.2.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c75ac65da39e5fe5ab759307499ddad880d724eed2f6ce5b5e8a26f4f387928c"
dependencies = [
 "utf8parse",
]

[[package]]
name = "anstyle-query"
version = "1.0.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e28923312444cdd728e4738b3f9c9cac739500909bb3d3c94b43551b16517648"
dependencies = [
 "windows-sys 0.52.0",
]

[[package]]
name = "anstyle-wincon"
version = "3.0.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "1cd54b81ec8d6180e24654d0b371ad22fc3dd083b6ff8ba325b72e00c87660a7"
dependencies = [
 "anstyle",
 "windows-sys 0.52.0",
]

[[package]]
name = "approx"
version = "0.5.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "cab112f0a86d568ea0e627cc1d6be74a1e9cd55214684db5561995f6dad897c6"
dependencies = [
 "num-traits",
]

[[package]]
name = "arrayref"
version = "0.3.7"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "6b4930d2cb77ce62f89ee5d5289b4ac049559b1c45539271f5ed4fdc7db34545"

[[package]]
name = "atty"
version = "0.2.14"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d9b39be18770d11421cdb1b9947a45dd3f37e93092cbf377614828a319d5fee8"
dependencies = [
 "hermit-abi 0.1.19",
 "libc",
 "winapi",
]

[[package]]
name = "autocfg"
version = "1.2.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f1fdabc7756949593fe60f30ec81974b613357de856987752631dea1e3394c80"

[[package]]
name = "backtrace"
version = "0.3.71"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "26b05800d2e817c8b3b4b54abd461726265fa9789ae34330622f2db9ee696f9d"
dependencies = [
 "addr2line",
 "cc",
 "cfg-if 1.0.0",
 "libc",
 "miniz_oxide",
 "object",
 "rustc-demangle",
]

[[package]]
name = "base32"
version = "0.4.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "23ce669cd6c8588f79e15cf450314f9638f967fc5770ff1c7c1deb0925ea7cfa"

[[package]]
name = "base64"
version = "0.13.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9e1b586273c5702936fe7b7d6896644d8be71e6314cfe09d3167c95f712589e8"

[[package]]
name = "base64"
version = "0.21.7"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9d297deb1925b89f2ccc13d7635fa0714f12c87adce1c75356b39ca9b7178567"

[[package]]
name = "bbs"
version = "0.4.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7e24ff98879bedb7fe7b3ce0c86268baca8468e8ce405d44459dbaf0b26ac9ca"
dependencies = [
 "arrayref",
 "blake2",
 "failure",
 "ff-zeroize",
 "hex",
 "hkdf",
 "pairing-plus",
 "rand 0.7.3",
 "rayon",
 "serde",
 "zeroize",
]

[[package]]
name = "bindgen"
version = "0.55.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "75b13ce559e6433d360c26305643803cb52cfbabbc2b9c47ce04a58493dfb443"
dependencies = [
 "bitflags",
 "cexpr",
 "cfg-if 0.1.10",
 "clang-sys",
 "clap 2.34.0",
 "env_logger 0.7.1",
 "lazy_static",
 "lazycell",
 "log",
 "peeking_take_while",
 "proc-macro2",
 "quote",
 "regex",
 "rustc-hash",
 "shlex 0.1.1",
 "which",
]

[[package]]
name = "bit_field"
version = "0.10.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "dc827186963e592360843fb5ba4b973e145841266c1357f7180c43526f2e5b61"

[[package]]
name = "bitflags"
version = "1.3.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "bef38d45163c2f1dde094a7dfd33ccf595c92905c8f8f4fdc18d06fb1037718a"

[[package]]
name = "blake2"
version = "0.8.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "94cb07b0da6a73955f8fb85d24c466778e70cda767a568229b104f0264089330"
dependencies = [
 "byte-tools",
 "crypto-mac",
 "digest 0.8.1",
 "opaque-debug 0.2.3",
]

[[package]]
name = "block-buffer"
version = "0.9.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4152116fd6e9dadb291ae18fc1ec3575ed6d84c29642d97890f4b4a3417297e4"
dependencies = [
 "generic-array 0.14.7",
]

[[package]]
name = "block-buffer"
version = "0.10.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3078c7629b62d3f0439517fa394996acacc5cbc91c5a20d8c658e77abd503a71"
dependencies = [
 "generic-array 0.14.7",
]

[[package]]
name = "bumpalo"
version = "3.16.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "79296716171880943b8470b5f8d03aa55eb2e645a4874bdbb28adb49162e012c"

[[package]]
name = "byte-tools"
version = "0.3.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e3b5ca7a04898ad4bcd41c90c5285445ff5b791899bb1b0abdd2a2aa791211d7"

[[package]]
name = "bytemuck"
version = "1.15.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5d6d68c57235a3a081186990eca2867354726650f42f7516ca50c28d6281fd15"

[[package]]
name = "byteorder"
version = "1.5.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "1fd0f2584146f6f2ef48085050886acf353beff7305ebd1ae69500e27c67f64b"

[[package]]
name = "bytes"
version = "1.6.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "514de17de45fdb8dc022b1a7975556c53c86f9f0aa5f534b98977b171857c2c9"

[[package]]
name = "cast"
version = "0.3.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "37b2a672a2cb129a2e41c10b1224bb368f9f37a2b16b612598138befd7b37eb5"

[[package]]
name = "cc"
version = "1.0.92"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "2678b2e3449475e95b0aa6f9b506a28e61b3dc8996592b983695e8ebb58a8b41"
dependencies = [
 "jobserver",
 "libc",
]

[[package]]
name = "cexpr"
version = "0.4.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f4aedb84272dbe89af497cf81375129abda4fc0a9e7c5d317498c15cc30c0d27"
dependencies = [
 "nom",
]

[[package]]
name = "cfg-if"
version = "0.1.10"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4785bdd1c96b2a846b2bd7cc02e86b6b3dbf14e7e53446c4f54c92a361040822"

[[package]]
name = "cfg-if"
version = "1.0.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "baf1de4339761588bc0619e3cbc0120ee582ebb74b53b4efbf79117bd2da40fd"

[[package]]
name = "chrono"
version = "0.4.37"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8a0d04d43504c61aa6c7531f1871dd0d418d91130162063b789da00fd7057a5e"
dependencies = [
 "android-tzdata",
 "iana-time-zone",
 "js-sys",
 "num-traits",
 "wasm-bindgen",
 "windows-targets 0.52.4",
]

[[package]]
name = "ciborium"
version = "0.2.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "42e69ffd6f0917f5c029256a24d0161db17cea3997d185db0d35926308770f0e"
dependencies = [
 "ciborium-io",
 "ciborium-ll",
 "serde",
]

[[package]]
name = "ciborium-io"
version = "0.2.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "05afea1e0a06c9be33d539b876f1ce3692f4afea2cb41f740e7743225ed1c757"

[[package]]
name = "ciborium-ll"
version = "0.2.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "57663b653d948a338bfb3eeba9bb2fd5fcfaecb9e199e87e1eda4d9e8b240fd9"
dependencies = [
 "ciborium-io",
 "half",
]

[[package]]
name = "clang"
version = "2.0.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "84c044c781163c001b913cd018fc95a628c50d0d2dfea8bca77dad71edb16e37"
dependencies = [
 "clang-sys",
 "libc",
]

[[package]]
name = "clang-sys"
version = "1.7.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "67523a3b4be3ce1989d607a828d036249522dd9c1c8de7f4dd2dae43a37369d1"
dependencies = [
 "glob",
 "libc",
 "libloading",
]

[[package]]
name = "clap"
version = "2.34.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a0610544180c38b88101fecf2dd634b174a62eef6946f84dfc6a7127512b381c"
dependencies = [
 "ansi_term",
 "atty",
 "bitflags",
 "strsim 0.8.0",
 "textwrap",
 "unicode-width",
 "vec_map",
]

[[package]]
name = "clap"
version = "4.5.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "90bc066a67923782aa8515dbaea16946c5bcc5addbd668bb80af688e53e548a0"
dependencies = [
 "clap_builder",
 "clap_derive",
]

[[package]]
name = "clap_builder"
version = "4.5.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ae129e2e766ae0ec03484e609954119f123cc1fe650337e155d03b022f24f7b4"
dependencies = [
 "anstream",
 "anstyle",
 "clap_lex",
 "strsim 0.11.1",
]

[[package]]
name = "clap_derive"
version = "4.5.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "528131438037fd55894f62d6e9f068b8f45ac57ffa77517819645d10aed04f64"
dependencies = [
 "heck",
 "proc-macro2",
 "quote",
 "syn 2.0.58",
]

[[package]]
name = "clap_lex"
version = "0.7.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "98cc8fbded0c607b7ba9dd60cd98df59af97e84d24e49c8557331cfc26d301ce"

[[package]]
name = "color_quant"
version = "1.1.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3d7b894f5411737b7867f4827955924d7c254fc9f4d91a6aad6b097804b1018b"

[[package]]
name = "colorchoice"
version = "1.0.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "acbf1af155f9b9ef647e42cdc158db4b64a1b61f743629225fde6f3e0be2a7c7"

[[package]]
name = "conv"
version = "0.3.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "78ff10625fd0ac447827aa30ea8b861fead473bb60aeb73af6c1c58caf0d1299"
dependencies = [
 "custom_derive",
]

[[package]]
name = "core-foundation-sys"
version = "0.8.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "06ea2b9bc92be3c2baa9334a323ebca2d6f074ff852cd1d7b11064035cd3868f"

[[package]]
name = "cpp"
version = "0.5.9"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "bfa65869ef853e45c60e9828aa08cdd1398cb6e13f3911d9cb2a079b144fcd64"
dependencies = [
 "cpp_macros",
]

[[package]]
name = "cpp_build"
version = "0.5.9"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "0e361fae2caf9758164b24da3eedd7f7d7451be30d90d8e7b5d2be29a2f0cf5b"
dependencies = [
 "cc",
 "cpp_common",
 "lazy_static",
 "proc-macro2",
 "regex",
 "syn 2.0.58",
 "unicode-xid",
]

[[package]]
name = "cpp_common"
version = "0.5.9"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3e1a2532e4ed4ea13031c13bc7bc0dbca4aae32df48e9d77f0d1e743179f2ea1"
dependencies = [
 "lazy_static",
 "proc-macro2",
 "syn 2.0.58",
]

[[package]]
name = "cpp_macros"
version = "0.5.9"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "47ec9cc90633446f779ef481a9ce5a0077107dd5b87016440448d908625a83fd"
dependencies = [
 "aho-corasick",
 "byteorder",
 "cpp_common",
 "lazy_static",
 "proc-macro2",
 "quote",
 "syn 2.0.58",
]

[[package]]
name = "cpufeatures"
version = "0.2.12"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "53fe5e26ff1b7aef8bca9c6080520cfb8d9333c7568e1829cef191a9723e5504"
dependencies = [
 "libc",
]

[[package]]
name = "crc32fast"
version = "1.4.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b3855a8a784b474f333699ef2bbca9db2c4a1f6d9088a90a2d25b1eb53111eaa"
dependencies = [
 "cfg-if 1.0.0",
]

[[package]]
name = "criterion"
version = "0.5.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f2b12d017a929603d80db1831cd3a24082f8137ce19c69e6447f54f5fc8d692f"
dependencies = [
 "anes",
 "cast",
 "ciborium",
 "clap 4.5.4",
 "criterion-plot",
 "is-terminal",
 "itertools 0.10.5",
 "num-traits",
 "once_cell",
 "oorandom",
 "plotters",
 "rayon",
 "regex",
 "serde",
 "serde_derive",
 "serde_json",
 "tinytemplate",
 "walkdir",
]

[[package]]
name = "criterion-plot"
version = "0.5.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "6b50826342786a51a89e2da3a28f1c32b06e387201bc2d19791f622c673706b1"
dependencies = [
 "cast",
 "itertools 0.10.5",
]

[[package]]
name = "crossbeam-deque"
version = "0.8.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "613f8cc01fe9cf1a3eb3d7f488fd2fa8388403e97039e2f73692932e291a770d"
dependencies = [
 "crossbeam-epoch",
 "crossbeam-utils",
]

[[package]]
name = "crossbeam-epoch"
version = "0.9.18"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5b82ac4a3c2ca9c3460964f020e1402edd5753411d7737aa39c3714ad1b5420e"
dependencies = [
 "crossbeam-utils",
]

[[package]]
name = "crossbeam-utils"
version = "0.8.19"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "248e3bacc7dc6baa3b21e405ee045c3047101a49145e7e9eca583ab4c2ca5345"

[[package]]
name = "crunchy"
version = "0.2.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7a81dae078cea95a014a339291cec439d2f232ebe854a9d672b796c6afafa9b7"

[[package]]
name = "crypto-common"
version = "0.1.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "1bfb12502f3fc46cca1bb51ac28df9d618d813cdc3d2f25b9fe775a34af26bb3"
dependencies = [
 "generic-array 0.14.7",
 "typenum",
]

[[package]]
name = "crypto-mac"
version = "0.7.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4434400df11d95d556bac068ddfedd482915eb18fe8bea89bc80b6e4b1c179e5"
dependencies = [
 "generic-array 0.12.4",
 "subtle 1.0.0",
]

[[package]]
name = "curve25519-dalek"
version = "3.2.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "90f9d052967f590a76e62eb387bd0bbb1b000182c3cefe5364db6b7211651bc0"
dependencies = [
 "byteorder",
 "digest 0.9.0",
 "rand_core 0.5.1",
 "subtle 2.5.0",
 "zeroize",
]

[[package]]
name = "custom_derive"
version = "0.1.7"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ef8ae57c4978a2acd8b869ce6b9ca1dfe817bff704c220209fdef2c0b75a01b9"

[[package]]
name = "derive_destructure2"
version = "0.1.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "64b697ac90ff296f0fc031ee5a61c7ac31fb9fff50e3fb32873b09223613fc0c"
dependencies = [
 "proc-macro2",
 "quote",
 "syn 2.0.58",
]

[[package]]
name = "digest"
version = "0.8.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f3d0c8c8752312f9713efd397ff63acb9f85585afbf179282e720e7704954dd5"
dependencies = [
 "generic-array 0.12.4",
]

[[package]]
name = "digest"
version = "0.9.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d3dd60d1080a57a05ab032377049e0591415d2b31afd7028356dbf3cc6dcb066"
dependencies = [
 "generic-array 0.14.7",
]

[[package]]
name = "digest"
version = "0.10.7"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9ed9a281f7bc9b7576e61468ba615a66a5c8cfdff42420a70aa82701a3b1e292"
dependencies = [
 "block-buffer 0.10.4",
 "crypto-common",
]

[[package]]
name = "dunce"
version = "1.0.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "56ce8c6da7551ec6c462cbaf3bfbc75131ebbfa1c944aeaa9dab51ca1c5f0c3b"

[[package]]
name = "ed25519"
version = "1.5.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "91cff35c70bba8a626e3185d8cd48cc11b5437e1a5bcd15b9b5fa3c64b6dfee7"
dependencies = [
 "signature",
]

[[package]]
name = "ed25519-dalek"
version = "1.0.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c762bae6dcaf24c4c84667b8579785430908723d5c889f469d76a41d59cc7a9d"
dependencies = [
 "curve25519-dalek",
 "ed25519",
 "rand 0.7.3",
 "serde",
 "sha2",
 "zeroize",
]

[[package]]
name = "either"
version = "1.10.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "11157ac094ffbdde99aa67b23417ebdd801842852b500e395a45a9c0aac03e4a"

[[package]]
name = "embed-doc-image"
version = "0.1.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "af36f591236d9d822425cb6896595658fa558fcebf5ee8accac1d4b92c47166e"
dependencies = [
 "base64 0.13.1",
 "proc-macro2",
 "quote",
 "syn 1.0.109",
]

[[package]]
name = "env_filter"
version = "0.1.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a009aa4810eb158359dda09d0c87378e4bbb89b5a801f016885a4707ba24f7ea"
dependencies = [
 "log",
 "regex",
]

[[package]]
name = "env_logger"
version = "0.7.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "44533bbbb3bb3c1fa17d9f2e4e38bbbaf8396ba82193c4cb1b6445d711445d36"
dependencies = [
 "atty",
 "humantime 1.3.0",
 "log",
 "regex",
 "termcolor",
]

[[package]]
name = "env_logger"
version = "0.11.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "38b35839ba51819680ba087cd351788c9a3c476841207e0b8cee0b04722343b9"
dependencies = [
 "anstream",
 "anstyle",
 "env_filter",
 "humantime 2.1.0",
 "log",
]

[[package]]
name = "equivalent"
version = "1.0.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5443807d6dff69373d433ab9ef5378ad8df50ca6298caf15de6e52e24aaf54d5"

[[package]]
name = "exr"
version = "1.72.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "887d93f60543e9a9362ef8a21beedd0a833c5d9610e18c67abe15a5963dcb1a4"
dependencies = [
 "bit_field",
 "flume",
 "half",
 "lebe",
 "miniz_oxide",
 "rayon-core",
 "smallvec",
 "zune-inflate",
]

[[package]]
name = "face"
version = "0.2.1"
source = "git+ssh://git@git.ins.jku.at/proj/digidow/face-lib.git#5985e8bbfa3aed2f88fd2c61b64aa6138e178416"
dependencies = [
 "byteorder",
 "criterion",
 "embed-doc-image",
 "image",
 "imageproc",
 "itertools 0.12.1",
 "nalgebra 0.32.5",
 "ndarray",
 "num_cpus",
 "opencv",
 "rusttype",
 "serde",
 "serde_json",
 "tflite",
]

[[package]]
name = "failure"
version = "0.1.8"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d32e9bd16cc02eae7db7ef620b392808b89f6a5e16bb3497d159c6b92a0f4f86"
dependencies = [
 "backtrace",
 "failure_derive",
]

[[package]]
name = "failure_derive"
version = "0.1.8"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "aa4da3c766cd7a0db8242e326e9e4e081edd567072893ed320008189715366a4"
dependencies = [
 "proc-macro2",
 "quote",
 "syn 1.0.109",
 "synstructure",
]

[[package]]
name = "fdeflate"
version = "0.3.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4f9bfee30e4dedf0ab8b422f03af778d9612b63f502710fc500a334ebe2de645"
dependencies = [
 "simd-adler32",
]

[[package]]
name = "ff-zeroize"
version = "0.6.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c02169a2e8515aa316ce516eaaf6318a76617839fbf904073284bc2576b029ee"
dependencies = [
 "byteorder",
 "ff_derive-zeroize",
 "rand_core 0.5.1",
 "zeroize",
]

[[package]]
name = "ff_derive-zeroize"
version = "0.6.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b24d4059bc0d0a0bf26b740aa21af1f96a984f0ab7a21356d00b32475388b53a"
dependencies = [
 "num-bigint 0.2.6",
 "num-integer",
 "num-traits",
 "proc-macro2",
 "quote",
 "syn 1.0.109",
]

[[package]]
name = "flate2"
version = "1.0.28"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "46303f565772937ffe1d394a4fac6f411c6013172fadde9dcdb1e147a086940e"
dependencies = [
 "crc32fast",
 "miniz_oxide",
]

[[package]]
name = "float-cmp"
version = "0.9.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "98de4bbd547a563b716d8dfa9aad1cb19bfab00f4fa09a6a4ed21dbcf44ce9c4"
dependencies = [
 "num-traits",
]

[[package]]
name = "flume"
version = "0.11.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "55ac459de2512911e4b674ce33cf20befaba382d05b62b008afc1c8b57cbf181"
dependencies = [
 "spin",
]

[[package]]
name = "fnv"
version = "1.0.7"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3f9eec918d3f24069decb9af1554cad7c880e2da24a9afd88aca000531ab82c1"

[[package]]
name = "form_urlencoded"
version = "1.2.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e13624c2627564efccf4934284bdd98cbaa14e79b0b5a141218e507b3a823456"
dependencies = [
 "percent-encoding",
]

[[package]]
name = "fuchsia-cprng"
version = "0.1.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a06f77d526c1a601b7c4cdd98f54b5eaabffc14d5f2f0296febdc7f357c6d3ba"

[[package]]
name = "futures-channel"
version = "0.3.30"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "eac8f7d7865dcb88bd4373ab671c8cf4508703796caa2b1985a9ca867b3fcb78"
dependencies = [
 "futures-core",
]

[[package]]
name = "futures-core"
version = "0.3.30"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "dfc6580bb841c5a68e9ef15c77ccc837b40a7504914d52e47b8b0e9bbda25a1d"

[[package]]
name = "futures-sink"
version = "0.3.30"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9fb8e00e87438d937621c1c6269e53f536c14d3fbd6a042bb24879e57d474fb5"

[[package]]
name = "futures-task"
version = "0.3.30"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "38d84fa142264698cdce1a9f9172cf383a0c82de1bddcf3092901442c4097004"

[[package]]
name = "futures-util"
version = "0.3.30"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3d6401deb83407ab3da39eba7e33987a73c3df0c82b4bb5813ee871c19c41d48"
dependencies = [
 "futures-core",
 "futures-task",
 "pin-project-lite",
 "pin-utils",
]

[[package]]
name = "generic-array"
version = "0.12.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ffdf9f34f1447443d37393cc6c2b8313aebddcd96906caf34e54c68d8e57d7bd"
dependencies = [
 "typenum",
]

[[package]]
name = "generic-array"
version = "0.14.7"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "85649ca51fd72272d7821adaf274ad91c288277713d9c18820d8499a7ff69e9a"
dependencies = [
 "typenum",
 "version_check",
]

[[package]]
name = "getrandom"
version = "0.1.16"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8fc3cb4d91f53b50155bdcfd23f6a4c39ae1969c2ae85982b135750cccaf5fce"
dependencies = [
 "cfg-if 1.0.0",
 "libc",
 "wasi 0.9.0+wasi-snapshot-preview1",
]

[[package]]
name = "getrandom"
version = "0.2.14"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "94b22e06ecb0110981051723910cbf0b5f5e09a2062dd7663334ee79a9d1286c"
dependencies = [
 "cfg-if 1.0.0",
 "libc",
 "wasi 0.11.0+wasi-snapshot-preview1",
]

[[package]]
name = "gif"
version = "0.13.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3fb2d69b19215e18bb912fa30f7ce15846e301408695e44e0ef719f1da9e19f2"
dependencies = [
 "color_quant",
 "weezl",
]

[[package]]
name = "gimli"
version = "0.28.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4271d37baee1b8c7e4b708028c57d816cf9d2434acb33a549475f78c181f6253"

[[package]]
name = "glob"
version = "0.3.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d2fabcfbdc87f4758337ca535fb41a6d701b65693ce38287d856d1674551ec9b"

[[package]]
name = "h2"
version = "0.3.26"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "81fe527a889e1532da5c525686d96d4c2e74cdd345badf8dfef9f6b39dd5f5e8"
dependencies = [
 "bytes",
 "fnv",
 "futures-core",
 "futures-sink",
 "futures-util",
 "http",
 "indexmap",
 "slab",
 "tokio",
 "tokio-util",
 "tracing",
]

[[package]]
name = "half"
version = "2.4.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "6dd08c532ae367adf81c312a4580bc67f1d0fe8bc9c460520283f4c0ff277888"
dependencies = [
 "cfg-if 1.0.0",
 "crunchy",
]

[[package]]
name = "hashbrown"
version = "0.14.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "290f1a1d9242c78d09ce40a5e87e7554ee637af1351968159f4952f028f75604"

[[package]]
name = "heck"
version = "0.5.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "2304e00983f87ffb38b55b444b5e3b60a884b5d30c0fca7d82fe33449bbe55ea"

[[package]]
name = "hermit-abi"
version = "0.1.19"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "62b467343b94ba476dcb2500d242dadbb39557df889310ac77c5d99100aaac33"
dependencies = [
 "libc",
]

[[package]]
name = "hermit-abi"
version = "0.3.9"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d231dfb89cfffdbc30e7fc41579ed6066ad03abda9e567ccafae602b97ec5024"

[[package]]
name = "hex"
version = "0.4.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7f24254aa9a54b5c858eaee2f5bccdb46aaf0e486a595ed5fd8f86ba55232a70"

[[package]]
name = "hkdf"
version = "0.8.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3fa08a006102488bd9cd5b8013aabe84955cf5ae22e304c2caf655b633aefae3"
dependencies = [
 "digest 0.8.1",
 "hmac",
]

[[package]]
name = "hmac"
version = "0.7.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5dcb5e64cda4c23119ab41ba960d1e170a774c8e4b9d9e6a9bc18aabf5e59695"
dependencies = [
 "crypto-mac",
 "digest 0.8.1",
]

[[package]]
name = "http"
version = "0.2.12"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "601cbb57e577e2f5ef5be8e7b83f0f63994f25aa94d673e54a92d5c516d101f1"
dependencies = [
 "bytes",
 "fnv",
 "itoa",
]

[[package]]
name = "http-body"
version = "0.4.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7ceab25649e9960c0311ea418d17bee82c0dcec1bd053b5f9a66e265a693bed2"
dependencies = [
 "bytes",
 "http",
 "pin-project-lite",
]

[[package]]
name = "httparse"
version = "1.8.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d897f394bad6a705d5f4104762e116a75639e470d80901eed05a860a95cb1904"

[[package]]
name = "httpdate"
version = "1.0.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "df3b46402a9d5adb4c86a0cf463f42e19994e3ee891101b1841f30a545cb49a9"

[[package]]
name = "humantime"
version = "1.3.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "df004cfca50ef23c36850aaaa59ad52cc70d0e90243c3c7737a4dd32dc7a3c4f"
dependencies = [
 "quick-error",
]

[[package]]
name = "humantime"
version = "2.1.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9a3a5bfb195931eeb336b2a7b4d761daec841b97f947d34394601737a7bba5e4"

[[package]]
name = "hyper"
version = "0.14.28"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "bf96e135eb83a2a8ddf766e426a841d8ddd7449d5f00d34ea02b41d2f19eef80"
dependencies = [
 "bytes",
 "futures-channel",
 "futures-core",
 "futures-util",
 "h2",
 "http",
 "http-body",
 "httparse",
 "httpdate",
 "itoa",
 "pin-project-lite",
 "socket2",
 "tokio",
 "tower-service",
 "tracing",
 "want",
]

[[package]]
name = "iana-time-zone"
version = "0.1.60"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e7ffbb5a1b541ea2561f8c41c087286cc091e21e556a4f09a8f6cbf17b69b141"
dependencies = [
 "android_system_properties",
 "core-foundation-sys",
 "iana-time-zone-haiku",
 "js-sys",
 "wasm-bindgen",
 "windows-core",
]

[[package]]
name = "iana-time-zone-haiku"
version = "0.1.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f31827a206f56af32e590ba56d5d2d085f558508192593743f16b2306495269f"
dependencies = [
 "cc",
]

[[package]]
name = "idna"
version = "0.5.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "634d9b1461af396cad843f47fdba5597a4f9e6ddd4bfb6ff5d85028c25cb12f6"
dependencies = [
 "unicode-bidi",
 "unicode-normalization",
]

[[package]]
name = "image"
version = "0.24.9"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5690139d2f55868e080017335e4b94cb7414274c74f1669c84fb5feba2c9f69d"
dependencies = [
 "bytemuck",
 "byteorder",
 "color_quant",
 "exr",
 "gif",
 "jpeg-decoder",
 "num-traits",
 "png",
 "qoi",
 "tiff",
]

[[package]]
name = "imageproc"
version = "0.23.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b6aee993351d466301a29655d628bfc6f5a35a0d062b6160ca0808f425805fd7"
dependencies = [
 "approx",
 "conv",
 "image",
 "itertools 0.10.5",
 "nalgebra 0.30.1",
 "num",
 "rand 0.7.3",
 "rand_distr",
 "rayon",
 "rusttype",
]

[[package]]
name = "indexmap"
version = "2.2.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "168fb715dda47215e360912c096649d23d58bf392ac62f73919e831745e40f26"
dependencies = [
 "equivalent",
 "hashbrown",
]

[[package]]
name = "is-terminal"
version = "0.4.12"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f23ff5ef2b80d608d61efee834934d862cd92461afc0560dedf493e4c033738b"
dependencies = [
 "hermit-abi 0.3.9",
 "libc",
 "windows-sys 0.52.0",
]

[[package]]
name = "itertools"
version = "0.10.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b0fd2260e829bddf4cb6ea802289de2f86d6a7a690192fbe91b3f46e0f2c8473"
dependencies = [
 "either",
]

[[package]]
name = "itertools"
version = "0.12.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ba291022dbbd398a455acf126c1e341954079855bc60dfdda641363bd6922569"
dependencies = [
 "either",
]

[[package]]
name = "itoa"
version = "1.0.11"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "49f1f14873335454500d59611f1cf4a4b0f786f9ac11f4312a78e4cf2566695b"

[[package]]
name = "jobserver"
version = "0.1.28"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ab46a6e9526ddef3ae7f787c06f0f2600639ba80ea3eade3d8e670a2230f51d6"
dependencies = [
 "libc",
]

[[package]]
name = "jobslot"
version = "0.2.17"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "0303fc691930667d6fd0b2cd194f9d6b37be3d890e0b89cf4a34e27231f35c4f"
dependencies = [
 "cfg-if 1.0.0",
 "derive_destructure2",
 "getrandom 0.2.14",
 "libc",
 "scopeguard",
 "windows-sys 0.52.0",
]

[[package]]
name = "jpeg-decoder"
version = "0.3.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f5d4a7da358eff58addd2877a45865158f0d78c911d43a5784ceb7bbf52833b0"
dependencies = [
 "rayon",
]

[[package]]
name = "js-sys"
version = "0.3.69"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "29c15563dc2726973df627357ce0c9ddddbea194836909d655df6a75d2cf296d"
dependencies = [
 "wasm-bindgen",
]

[[package]]
name = "json"
version = "0.12.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "078e285eafdfb6c4b434e0d31e8cfcb5115b651496faca5749b88fafd4f23bfd"

[[package]]
name = "keccak"
version = "0.1.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ecc2af9a1119c51f12a14607e783cb977bde58bc069ff0c3da1095e635d70654"
dependencies = [
 "cpufeatures",
]

[[package]]
name = "lazy_static"
version = "1.4.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e2abad23fbc42b3700f2f279844dc832adb2b2eb069b2df918f455c4e18cc646"

[[package]]
name = "lazycell"
version = "1.3.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "830d08ce1d1d941e6b30645f1a0eb5643013d835ce3779a5fc208261dbe10f55"

[[package]]
name = "lebe"
version = "0.5.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "03087c2bad5e1034e8cace5926dec053fb3790248370865f5117a7d0213354c8"

[[package]]
name = "libc"
version = "0.2.153"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9c198f91728a82281a64e1f4f9eeb25d82cb32a5de251c6bd1b5154d63a8e7bd"

[[package]]
name = "libloading"
version = "0.8.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "0c2a198fb6b0eada2a8df47933734e6d35d350665a33a3593d7164fa52c75c19"
dependencies = [
 "cfg-if 1.0.0",
 "windows-targets 0.52.4",
]

[[package]]
name = "lock_api"
version = "0.4.11"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3c168f8615b12bc01f9c17e2eb0cc07dcae1940121185446edc3744920e8ef45"
dependencies = [
 "autocfg",
 "scopeguard",
]

[[package]]
name = "log"
version = "0.4.21"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "90ed8c1e510134f979dbc4f070f87d4313098b704861a105fe34231c70a3901c"

[[package]]
name = "matrixmultiply"
version = "0.3.8"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7574c1cf36da4798ab73da5b215bbf444f50718207754cb522201d78d1cd0ff2"
dependencies = [
 "autocfg",
 "rawpointer",
]

[[package]]
name = "maybe-owned"
version = "0.3.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4facc753ae494aeb6e3c22f839b158aebd4f9270f55cd3c79906c45476c47ab4"

[[package]]
name = "memchr"
version = "2.7.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "6c8640c5d730cb13ebd907d8d04b52f55ac9a2eec55b440c8892f40d56c76c1d"

[[package]]
name = "miniz_oxide"
version = "0.7.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9d811f3e15f28568be3407c8e7fdb6514c1cda3cb30683f15b6a1a1dc4ea14a7"
dependencies = [
 "adler",
 "simd-adler32",
]

[[package]]
name = "mio"
version = "0.8.11"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a4a650543ca06a924e8b371db273b2756685faae30f8487da1b56505a8f78b0c"
dependencies = [
 "libc",
 "wasi 0.11.0+wasi-snapshot-preview1",
 "windows-sys 0.48.0",
]

[[package]]
name = "nalgebra"
version = "0.30.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4fb2d0de08694bed883320212c18ee3008576bfe8c306f4c3c4a58b4876998be"
dependencies = [
 "approx",
 "matrixmultiply",
 "num-complex",
 "num-rational",
 "num-traits",
 "simba 0.7.3",
 "typenum",
]

[[package]]
name = "nalgebra"
version = "0.32.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3ea4908d4f23254adda3daa60ffef0f1ac7b8c3e9a864cf3cc154b251908a2ef"
dependencies = [
 "approx",
 "matrixmultiply",
 "nalgebra-macros",
 "num-complex",
 "num-rational",
 "num-traits",
 "simba 0.8.1",
 "typenum",
]

[[package]]
name = "nalgebra-macros"
version = "0.2.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "91761aed67d03ad966ef783ae962ef9bbaca728d2dd7ceb7939ec110fffad998"
dependencies = [
 "proc-macro2",
 "quote",
 "syn 1.0.109",
]

[[package]]
name = "ndarray"
version = "0.15.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "adb12d4e967ec485a5f71c6311fe28158e9d6f4bc4a447b474184d0f91a8fa32"
dependencies = [
 "matrixmultiply",
 "num-complex",
 "num-integer",
 "num-traits",
 "rawpointer",
]

[[package]]
name = "nom"
version = "5.1.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "08959a387a676302eebf4ddbcbc611da04285579f76f88ee0506c63b1a61dd4b"
dependencies = [
 "memchr",
 "version_check",
]

[[package]]
name = "num"
version = "0.4.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b05180d69e3da0e530ba2a1dae5110317e49e3b7f3d41be227dc5f92e49ee7af"
dependencies = [
 "num-bigint 0.4.4",
 "num-complex",
 "num-integer",
 "num-iter",
 "num-rational",
 "num-traits",
]

[[package]]
name = "num-bigint"
version = "0.2.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "090c7f9998ee0ff65aa5b723e4009f7b217707f1fb5ea551329cc4d6231fb304"
dependencies = [
 "autocfg",
 "num-integer",
 "num-traits",
]

[[package]]
name = "num-bigint"
version = "0.4.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "608e7659b5c3d7cba262d894801b9ec9d00de989e8a82bd4bef91d08da45cdc0"
dependencies = [
 "autocfg",
 "num-integer",
 "num-traits",
]

[[package]]
name = "num-complex"
version = "0.4.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "23c6602fda94a57c990fe0df199a035d83576b496aa29f4e634a8ac6004e68a6"
dependencies = [
 "num-traits",
]

[[package]]
name = "num-integer"
version = "0.1.46"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7969661fd2958a5cb096e56c8e1ad0444ac2bbcd0061bd28660485a44879858f"
dependencies = [
 "num-traits",
]

[[package]]
name = "num-iter"
version = "0.1.44"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d869c01cc0c455284163fd0092f1f93835385ccab5a98a0dcc497b2f8bf055a9"
dependencies = [
 "autocfg",
 "num-integer",
 "num-traits",
]

[[package]]
name = "num-rational"
version = "0.4.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "0638a1c9d0a3c0914158145bc76cff373a75a627e6ecbfb71cbe6f453a5a19b0"
dependencies = [
 "autocfg",
 "num-bigint 0.4.4",
 "num-integer",
 "num-traits",
]

[[package]]
name = "num-traits"
version = "0.2.18"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "da0df0e5185db44f69b44f26786fe401b6c293d1907744beaa7fa62b2e5a517a"
dependencies = [
 "autocfg",
]

[[package]]
name = "num_cpus"
version = "1.16.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4161fcb6d602d4d2081af7c3a45852d875a03dd337a6bfdd6e06407b61342a43"
dependencies = [
 "hermit-abi 0.3.9",
 "libc",
]

[[package]]
name = "object"
version = "0.32.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a6a622008b6e321afc04970976f62ee297fdbaa6f95318ca343e3eebb9648441"
dependencies = [
 "memchr",
]

[[package]]
name = "once_cell"
version = "1.19.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3fdb12b2476b595f9358c5161aa467c2438859caa136dec86c26fdd2efe17b92"

[[package]]
name = "oorandom"
version = "11.1.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "0ab1bc2a289d34bd04a330323ac98a1b4bc82c9d9fcb1e66b63caa84da26b575"

[[package]]
name = "opaque-debug"
version = "0.2.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "2839e79665f131bdb5782e51f2c6c9599c133c6098982a54c794358bf432529c"

[[package]]
name = "opaque-debug"
version = "0.3.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c08d65885ee38876c4f86fa503fb49d7b507c2b62552df7c70b2fce627e06381"

[[package]]
name = "opencv"
version = "0.88.9"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "1adf831acddcefe251e825b01d84bbd1142a6977e3ec1ba02edfbdbc17e863af"
dependencies = [
 "cc",
 "dunce",
 "jobslot",
 "libc",
 "num-traits",
 "once_cell",
 "opencv-binding-generator",
 "pkg-config",
 "semver",
 "shlex 1.3.0",
 "vcpkg",
]

[[package]]
name = "opencv-binding-generator"
version = "0.84.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "6e842c276fd00b26100de550e2b47f6ded4f06213c62f0575cb7242aecde2efd"
dependencies = [
 "clang",
 "clang-sys",
 "dunce",
 "once_cell",
 "percent-encoding",
 "regex",
]

[[package]]
name = "owned_ttf_parser"
version = "0.15.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "05e6affeb1632d6ff6a23d2cd40ffed138e82f1532571a26f527c8a284bb2fbb"
dependencies = [
 "ttf-parser",
]

[[package]]
name = "pairing-plus"
version = "0.19.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "58cda4f22e8e6720f3c254049960c8cc4f93cb82b5ade43bddd2622b5f39ea62"
dependencies = [
 "byteorder",
 "digest 0.8.1",
 "ff-zeroize",
 "rand 0.4.6",
 "rand_core 0.5.1",
 "rand_xorshift",
 "zeroize",
]

[[package]]
name = "parking_lot"
version = "0.12.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3742b2c103b9f06bc9fff0a37ff4912935851bee6d36f3c02bcc755bcfec228f"
dependencies = [
 "lock_api",
 "parking_lot_core",
]

[[package]]
name = "parking_lot_core"
version = "0.9.9"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4c42a9226546d68acdd9c0a280d17ce19bfe27a46bf68784e4066115788d008e"
dependencies = [
 "cfg-if 1.0.0",
 "libc",
 "redox_syscall",
 "smallvec",
 "windows-targets 0.48.5",
]

[[package]]
name = "paste"
version = "1.0.14"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "de3145af08024dea9fa9914f381a17b8fc6034dfb00f3a84013f7ff43f29ed4c"

[[package]]
name = "peeking_take_while"
version = "0.1.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "19b17cddbe7ec3f8bc800887bab5e717348c95ea2ca0b1bf0837fb964dc67099"

[[package]]
name = "percent-encoding"
version = "2.3.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e3148f5046208a5d56bcfc03053e3ca6334e51da8dfb19b6cdc8b306fae3283e"

[[package]]
name = "pin-project-lite"
version = "0.2.14"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "bda66fc9667c18cb2758a2ac84d1167245054bcf85d5d1aaa6923f45801bdd02"

[[package]]
name = "pin-utils"
version = "0.1.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8b870d8c151b6f2fb93e84a13146138f05d02ed11c7e7c54f8826aaaf7c9f184"

[[package]]
name = "pkg-config"
version = "0.3.30"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d231b230927b5e4ad203db57bbcbee2802f6bce620b1e4a9024a07d94e2907ec"

[[package]]
name = "plotters"
version = "0.3.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d2c224ba00d7cadd4d5c660deaf2098e5e80e07846537c51f9cfa4be50c1fd45"
dependencies = [
 "num-traits",
 "plotters-backend",
 "plotters-svg",
 "wasm-bindgen",
 "web-sys",
]

[[package]]
name = "plotters-backend"
version = "0.3.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9e76628b4d3a7581389a35d5b6e2139607ad7c75b17aed325f210aa91f4a9609"

[[package]]
name = "plotters-svg"
version = "0.3.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "38f6d39893cca0701371e3c27294f09797214b86f1fb951b89ade8ec04e2abab"
dependencies = [
 "plotters-backend",
]

[[package]]
name = "png"
version = "0.17.13"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "06e4b0d3d1312775e782c86c91a111aa1f910cbb65e1337f9975b5f9a554b5e1"
dependencies = [
 "bitflags",
 "crc32fast",
 "fdeflate",
 "flate2",
 "miniz_oxide",
]

[[package]]
name = "ppv-lite86"
version = "0.2.17"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5b40af805b3121feab8a3c29f04d8ad262fa8e0561883e7653e024ae4479e6de"

[[package]]
name = "proc-macro2"
version = "1.0.79"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e835ff2298f5721608eb1a980ecaee1aef2c132bf95ecc026a11b7bf3c01c02e"
dependencies = [
 "unicode-ident",
]

[[package]]
name = "qoi"
version = "0.4.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7f6d64c71eb498fe9eae14ce4ec935c555749aef511cca85b5568910d6e48001"
dependencies = [
 "bytemuck",
]

[[package]]
name = "quick-error"
version = "1.2.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a1d01941d82fa2ab50be1e79e6714289dd7cde78eba4c074bc5a4374f650dfe0"

[[package]]
name = "quote"
version = "1.0.36"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "0fa76aaf39101c457836aec0ce2316dbdc3ab723cdda1c6bd4e6ad4208acaca7"
dependencies = [
 "proc-macro2",
]

[[package]]
name = "rand"
version = "0.4.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "552840b97013b1a26992c11eac34bdd778e464601a4c2054b5f0bff7c6761293"
dependencies = [
 "fuchsia-cprng",
 "libc",
 "rand_core 0.3.1",
 "rdrand",
 "winapi",
]

[[package]]
name = "rand"
version = "0.7.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "6a6b1679d49b24bbfe0c803429aa1874472f50d9b363131f0e89fc356b544d03"
dependencies = [
 "getrandom 0.1.16",
 "libc",
 "rand_chacha",
 "rand_core 0.5.1",
 "rand_hc",
]

[[package]]
name = "rand_chacha"
version = "0.2.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f4c8ed856279c9737206bf725bf36935d8666ead7aa69b52be55af369d193402"
dependencies = [
 "ppv-lite86",
 "rand_core 0.5.1",
]

[[package]]
name = "rand_core"
version = "0.3.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7a6fdeb83b075e8266dcc8762c22776f6877a63111121f5f8c7411e5be7eed4b"
dependencies = [
 "rand_core 0.4.2",
]

[[package]]
name = "rand_core"
version = "0.4.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9c33a3c44ca05fa6f1807d8e6743f3824e8509beca625669633be0acbdf509dc"

[[package]]
name = "rand_core"
version = "0.5.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "90bde5296fc891b0cef12a6d03ddccc162ce7b2aff54160af9338f8d40df6d19"
dependencies = [
 "getrandom 0.1.16",
]

[[package]]
name = "rand_distr"
version = "0.2.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "96977acbdd3a6576fb1d27391900035bf3863d4a16422973a409b488cf29ffb2"
dependencies = [
 "rand 0.7.3",
]

[[package]]
name = "rand_hc"
version = "0.2.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ca3129af7b92a17112d59ad498c6f81eaf463253766b90396d39ea7a39d6613c"
dependencies = [
 "rand_core 0.5.1",
]

[[package]]
name = "rand_xorshift"
version = "0.2.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "77d416b86801d23dde1aa643023b775c3a462efc0ed96443add11546cdf1dca8"
dependencies = [
 "rand_core 0.5.1",
]

[[package]]
name = "rawpointer"
version = "0.2.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "60a357793950651c4ed0f3f52338f53b2f809f32d83a07f72909fa13e4c6c1e3"

[[package]]
name = "rayon"
version = "1.10.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b418a60154510ca1a002a752ca9714984e21e4241e804d32555251faf8b78ffa"
dependencies = [
 "either",
 "rayon-core",
]

[[package]]
name = "rayon-core"
version = "1.12.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "1465873a3dfdaa8ae7cb14b4383657caab0b3e8a0aa9ae8e04b044854c8dfce2"
dependencies = [
 "crossbeam-deque",
 "crossbeam-utils",
]

[[package]]
name = "rdrand"
version = "0.4.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "678054eb77286b51581ba43620cc911abf02758c91f93f479767aed0f90458b2"
dependencies = [
 "rand_core 0.3.1",
]

[[package]]
name = "redox_syscall"
version = "0.4.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4722d768eff46b75989dd134e5c353f0d6296e5aaa3132e776cbdb56be7731aa"
dependencies = [
 "bitflags",
]

[[package]]
name = "regex"
version = "1.10.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c117dbdfde9c8308975b6a18d71f3f385c89461f7b3fb054288ecf2a2058ba4c"
dependencies = [
 "aho-corasick",
 "memchr",
 "regex-automata",
 "regex-syntax",
]

[[package]]
name = "regex-automata"
version = "0.4.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "86b83b8b9847f9bf95ef68afb0b8e6cdb80f498442f5179a29fad448fcc1eaea"
dependencies = [
 "aho-corasick",
 "memchr",
 "regex-syntax",
]

[[package]]
name = "regex-syntax"
version = "0.8.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "adad44e29e4c806119491a7f06f03de4d1af22c3a680dd47f1e6e179439d1f56"

[[package]]
name = "ring"
version = "0.17.8"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c17fa4cb658e3583423e915b9f3acc01cceaee1860e33d59ebae66adc3a2dc0d"
dependencies = [
 "cc",
 "cfg-if 1.0.0",
 "getrandom 0.2.14",
 "libc",
 "spin",
 "untrusted",
 "windows-sys 0.52.0",
]

[[package]]
name = "rustc-demangle"
version = "0.1.23"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d626bb9dae77e28219937af045c257c28bfd3f69333c512553507f5f9798cb76"

[[package]]
name = "rustc-hash"
version = "1.1.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "08d43f7aa6b08d49f382cde6a7982047c3426db949b1424bc4b7ec9ae12c6ce2"

[[package]]
name = "rustls"
version = "0.21.10"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f9d5a6813c0759e4609cd494e8e725babae6a2ca7b62a5536a13daaec6fcb7ba"
dependencies = [
 "log",
 "ring",
 "rustls-webpki",
 "sct",
]

[[package]]
name = "rustls-webpki"
version = "0.101.7"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8b6275d1ee7a1cd780b64aca7726599a1dbc893b1e64144529e55c3c2f745765"
dependencies = [
 "ring",
 "untrusted",
]

[[package]]
name = "rusttype"
version = "0.9.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3ff8374aa04134254b7995b63ad3dc41c7f7236f69528b28553da7d72efaa967"
dependencies = [
 "ab_glyph_rasterizer",
 "owned_ttf_parser",
]

[[package]]
name = "ryu"
version = "1.0.17"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e86697c916019a8588c99b5fac3cead74ec0b4b819707a682fd4d23fa0ce1ba1"

[[package]]
name = "safe_arch"
version = "0.7.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f398075ce1e6a179b46f51bd88d0598b92b00d3551f1a2d4ac49e771b56ac354"
dependencies = [
 "bytemuck",
]

[[package]]
name = "same-file"
version = "1.0.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "93fc1dc3aaa9bfed95e02e6eadabb4baf7e3078b0bd1b4d7b6b0b68378900502"
dependencies = [
 "winapi-util",
]

[[package]]
name = "scopeguard"
version = "1.2.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "94143f37725109f92c262ed2cf5e59bce7498c01bcc1502d7b9afe439a4e9f49"

[[package]]
name = "sct"
version = "0.7.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "da046153aa2352493d6cb7da4b6e5c0c057d8a1d0a9aa8560baffdd945acd414"
dependencies = [
 "ring",
 "untrusted",
]

[[package]]
name = "semver"
version = "1.0.22"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "92d43fe69e652f3df9bdc2b85b2854a0825b86e4fb76bc44d945137d053639ca"

[[package]]
name = "sensor"
version = "0.1.0"
dependencies = [
 "base64 0.21.7",
 "chrono",
 "clap 4.5.4",
 "env_logger 0.11.3",
 "face",
 "float-cmp",
 "image",
 "imageproc",
 "json",
 "log",
 "opencv",
 "sensor-lib",
 "serde",
 "serde_json",
 "tokio",
 "ureq",
 "uuid",
 "verifiable-credential-parser-rust",
 "zwuevi",
]

[[package]]
name = "sensor-lib"
version = "0.2.2"
source = "git+ssh://git@git.ins.jku.at/proj/digidow/sensor-lib.git#8050c0cefa36314fdbf0bac060424ccb88713ab0"
dependencies = [
 "chrono",
 "hyper",
 "log",
 "serde",
 "serde_json",
 "tokio",
 "ureq",
 "url",
 "verifiable-credential-parser-rust",
 "zwuevi",
]

[[package]]
name = "serde"
version = "1.0.197"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3fb1c873e1b9b056a4dc4c0c198b24c3ffa059243875552b2bd0933b1aee4ce2"
dependencies = [
 "serde_derive",
]

[[package]]
name = "serde_derive"
version = "1.0.197"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7eb0b34b42edc17f6b7cac84a52a1c5f0e1bb2227e997ca9011ea3dd34e8610b"
dependencies = [
 "proc-macro2",
 "quote",
 "syn 2.0.58",
]

[[package]]
name = "serde_json"
version = "1.0.115"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "12dc5c46daa8e9fdf4f5e71b6cf9a53f2487da0e86e55808e2d35539666497dd"
dependencies = [
 "itoa",
 "ryu",
 "serde",
]

[[package]]
name = "sha2"
version = "0.9.9"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4d58a1e1bf39749807d89cf2d98ac2dfa0ff1cb3faa38fbb64dd88ac8013d800"
dependencies = [
 "block-buffer 0.9.0",
 "cfg-if 1.0.0",
 "cpufeatures",
 "digest 0.9.0",
 "opaque-debug 0.3.1",
]

[[package]]
name = "sha3"
version = "0.10.8"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "75872d278a8f37ef87fa0ddbda7802605cb18344497949862c0d4dcb291eba60"
dependencies = [
 "digest 0.10.7",
 "keccak",
]

[[package]]
name = "shlex"
version = "0.1.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7fdf1b9db47230893d76faad238fd6097fd6d6a9245cd7a4d90dbd639536bbd2"

[[package]]
name = "shlex"
version = "1.3.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "0fda2ff0d084019ba4d7c6f371c95d8fd75ce3524c3cb8fb653a3023f6323e64"

[[package]]
name = "signal-hook-registry"
version = "1.4.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d8229b473baa5980ac72ef434c4415e70c4b5e71b423043adb4ba059f89c99a1"
dependencies = [
 "libc",
]

[[package]]
name = "signature"
version = "1.6.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "74233d3b3b2f6d4b006dc19dee745e73e2a6bfb6f93607cd3b02bd5b00797d7c"

[[package]]
name = "simba"
version = "0.7.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "2f3fd720c48c53cace224ae62bef1bbff363a70c68c4802a78b5cc6159618176"
dependencies = [
 "approx",
 "num-complex",
 "num-traits",
 "paste",
 "wide",
]

[[package]]
name = "simba"
version = "0.8.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "061507c94fc6ab4ba1c9a0305018408e312e17c041eb63bef8aa726fa33aceae"
dependencies = [
 "approx",
 "num-complex",
 "num-traits",
 "paste",
 "wide",
]

[[package]]
name = "simd-adler32"
version = "0.3.7"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d66dc143e6b11c1eddc06d5c423cfc97062865baf299914ab64caa38182078fe"

[[package]]
name = "slab"
version = "0.4.9"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8f92a496fb766b417c996b9c5e57daf2f7ad3b0bebe1ccfca4856390e3d3bb67"
dependencies = [
 "autocfg",
]

[[package]]
name = "smallvec"
version = "1.13.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3c5e1a9a646d36c3599cd173a41282daf47c44583ad367b8e6837255952e5c67"

[[package]]
name = "socket2"
version = "0.5.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "05ffd9c0a93b7543e062e759284fcf5f5e3b098501104bfbdde4d404db792871"
dependencies = [
 "libc",
 "windows-sys 0.52.0",
]

[[package]]
name = "socks"
version = "0.3.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f0c3dbbd9ae980613c6dd8e28a9407b50509d3803b57624d5dfe8315218cd58b"
dependencies = [
 "byteorder",
 "libc",
 "winapi",
]

[[package]]
name = "spin"
version = "0.9.8"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "6980e8d7511241f8acf4aebddbb1ff938df5eebe98691418c4468d0b72a96a67"
dependencies = [
 "lock_api",
]

[[package]]
name = "strsim"
version = "0.8.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8ea5119cdb4c55b55d432abb513a0429384878c15dde60cc77b1c99de1a95a6a"

[[package]]
name = "strsim"
version = "0.11.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7da8b5736845d9f2fcb837ea5d9e2628564b3b043a70948a3f0b778838c5fb4f"

[[package]]
name = "subtle"
version = "1.0.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "2d67a5a62ba6e01cb2192ff309324cb4875d0c451d55fe2319433abe7a05a8ee"

[[package]]
name = "subtle"
version = "2.5.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "81cdd64d312baedb58e21336b31bc043b77e01cc99033ce76ef539f78e965ebc"

[[package]]
name = "syn"
version = "1.0.109"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "72b64191b275b66ffe2469e8af2c1cfe3bafa67b529ead792a6d0160888b4237"
dependencies = [
 "proc-macro2",
 "quote",
 "unicode-ident",
]

[[package]]
name = "syn"
version = "2.0.58"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "44cfb93f38070beee36b3fef7d4f5a16f27751d94b187b666a5cc5e9b0d30687"
dependencies = [
 "proc-macro2",
 "quote",
 "unicode-ident",
]

[[package]]
name = "synstructure"
version = "0.12.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f36bdaa60a83aca3921b5259d5400cbf5e90fc51931376a9bd4a0eb79aa7210f"
dependencies = [
 "proc-macro2",
 "quote",
 "syn 1.0.109",
 "unicode-xid",
]

[[package]]
name = "termcolor"
version = "1.4.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "06794f8f6c5c898b3275aebefa6b8a1cb24cd2c6c79397ab15774837a0bc5755"
dependencies = [
 "winapi-util",
]

[[package]]
name = "textwrap"
version = "0.11.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d326610f408c7a4eb6f51c37c330e496b08506c9457c9d34287ecc38809fb060"
dependencies = [
 "unicode-width",
]

[[package]]
name = "tflite"
version = "0.9.6"
source = "git+https://github.com/p-hofer/tflite-rs#728c0054ad93b664d082086b17666fd308aa947e"
dependencies = [
 "bindgen",
 "cpp",
 "cpp_build",
 "libc",
 "maybe-owned",
 "thiserror",
]

[[package]]
name = "thiserror"
version = "1.0.58"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "03468839009160513471e86a034bb2c5c0e4baae3b43f79ffc55c4a5427b3297"
dependencies = [
 "thiserror-impl",
]

[[package]]
name = "thiserror-impl"
version = "1.0.58"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c61f3ba182994efc43764a46c018c347bc492c79f024e705f46567b418f6d4f7"
dependencies = [
 "proc-macro2",
 "quote",
 "syn 2.0.58",
]

[[package]]
name = "tiff"
version = "0.9.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ba1310fcea54c6a9a4fd1aad794ecc02c31682f6bfbecdf460bf19533eed1e3e"
dependencies = [
 "flate2",
 "jpeg-decoder",
 "weezl",
]

[[package]]
name = "tinytemplate"
version = "1.2.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "be4d6b5f19ff7664e8c98d03e2139cb510db9b0a60b55f8e8709b689d939b6bc"
dependencies = [
 "serde",
 "serde_json",
]

[[package]]
name = "tinyvec"
version = "1.6.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "87cc5ceb3875bb20c2890005a4e226a4651264a5c75edb2421b52861a0a0cb50"
dependencies = [
 "tinyvec_macros",
]

[[package]]
name = "tinyvec_macros"
version = "0.1.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "1f3ccbac311fea05f86f61904b462b55fb3df8837a366dfc601a0161d0532f20"

[[package]]
name = "tokio"
version = "1.37.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "1adbebffeca75fcfd058afa480fb6c0b81e165a0323f9c9d39c9697e37c46787"
dependencies = [
 "backtrace",
 "bytes",
 "libc",
 "mio",
 "num_cpus",
 "parking_lot",
 "pin-project-lite",
 "signal-hook-registry",
 "socket2",
 "tokio-macros",
 "windows-sys 0.48.0",
]

[[package]]
name = "tokio-macros"
version = "2.2.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5b8a1e28f2deaa14e508979454cb3a223b10b938b45af148bc0986de36f1923b"
dependencies = [
 "proc-macro2",
 "quote",
 "syn 2.0.58",
]

[[package]]
name = "tokio-util"
version = "0.7.10"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5419f34732d9eb6ee4c3578b7989078579b7f039cbbb9ca2c4da015749371e15"
dependencies = [
 "bytes",
 "futures-core",
 "futures-sink",
 "pin-project-lite",
 "tokio",
 "tracing",
]

[[package]]
name = "tower-service"
version = "0.3.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b6bc1c9ce2b5135ac7f93c72918fc37feb872bdc6a5533a8b85eb4b86bfdae52"

[[package]]
name = "tracing"
version = "0.1.40"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c3523ab5a71916ccf420eebdf5521fcef02141234bbc0b8a49f2fdc4544364ef"
dependencies = [
 "pin-project-lite",
 "tracing-core",
]

[[package]]
name = "tracing-core"
version = "0.1.32"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c06d3da6113f116aaee68e4d601191614c9053067f9ab7f6edbcb161237daa54"
dependencies = [
 "once_cell",
]

[[package]]
name = "try-lock"
version = "0.2.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e421abadd41a4225275504ea4d6566923418b7f05506fbc9c0fe86ba7396114b"

[[package]]
name = "ttf-parser"
version = "0.15.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7b3e06c9b9d80ed6b745c7159c40b311ad2916abb34a49e9be2653b90db0d8dd"

[[package]]
name = "typenum"
version = "1.17.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "42ff0bf0c66b8238c6f3b578df37d0b7848e55df8577b3f74f92a69acceeb825"

[[package]]
name = "unicode-bidi"
version = "0.3.15"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "08f95100a766bf4f8f28f90d77e0a5461bbdb219042e7679bebe79004fed8d75"

[[package]]
name = "unicode-ident"
version = "1.0.12"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3354b9ac3fae1ff6755cb6db53683adb661634f67557942dea4facebec0fee4b"

[[package]]
name = "unicode-normalization"
version = "0.1.23"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a56d1686db2308d901306f92a263857ef59ea39678a5458e7cb17f01415101f5"
dependencies = [
 "tinyvec",
]

[[package]]
name = "unicode-width"
version = "0.1.11"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e51733f11c9c4f72aa0c160008246859e340b00807569a0da0e7a1079b27ba85"

[[package]]
name = "unicode-xid"
version = "0.2.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f962df74c8c05a667b5ee8bcf162993134c104e96440b663c8daa176dc772d8c"

[[package]]
name = "untrusted"
version = "0.9.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8ecb6da28b8a351d773b68d5825ac39017e680750f980f3a1a85cd8dd28a47c1"

[[package]]
name = "ureq"
version = "2.9.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f8cdd25c339e200129fe4de81451814e5228c9b771d57378817d6117cc2b3f97"
dependencies = [
 "base64 0.21.7",
 "flate2",
 "log",
 "once_cell",
 "rustls",
 "rustls-webpki",
 "serde",
 "serde_json",
 "socks",
 "url",
 "webpki-roots",
]

[[package]]
name = "url"
version = "2.5.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "31e6302e3bb753d46e83516cae55ae196fc0c309407cf11ab35cc51a4c2a4633"
dependencies = [
 "form_urlencoded",
 "idna",
 "percent-encoding",
]

[[package]]
name = "utf8parse"
version = "0.2.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "711b9620af191e0cdc7468a8d14e709c3dcdb115b36f838e601583af800a370a"

[[package]]
name = "uuid"
version = "1.8.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a183cf7feeba97b4dd1c0d46788634f6221d87fa961b305bed08c851829efcc0"
dependencies = [
 "getrandom 0.2.14",
 "serde",
]

[[package]]
name = "vcpkg"
version = "0.2.15"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "accd4ea62f7bb7a82fe23066fb0957d48ef677f6eeb8215f372f52e48bb32426"

[[package]]
name = "vec_map"
version = "0.8.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f1bddf1187be692e79c5ffeab891132dfb0f236ed36a43c7ed39f1165ee20191"

[[package]]
name = "verifiable-credential-parser-rust"
version = "0.3.0"
source = "git+ssh://git@git.ins.jku.at/proj/digidow/verifiable-credential-parser-rust.git#bff413f0b3cd15606229142b2c52061673ad3a0e"
dependencies = [
 "base64 0.13.1",
 "bbs",
 "log",
 "serde",
 "serde_json",
 "url",
]

[[package]]
name = "version_check"
version = "0.9.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "49874b5167b65d7193b8aba1567f5c7d93d001cafc34600cee003eda787e483f"

[[package]]
name = "walkdir"
version = "2.5.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "29790946404f91d9c5d06f9874efddea1dc06c5efe94541a7d6863108e3a5e4b"
dependencies = [
 "same-file",
 "winapi-util",
]

[[package]]
name = "want"
version = "0.3.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "bfa7760aed19e106de2c7c0b581b509f2f25d3dacaf737cb82ac61bc6d760b0e"
dependencies = [
 "try-lock",
]

[[package]]
name = "wasi"
version = "0.9.0+wasi-snapshot-preview1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "cccddf32554fecc6acb585f82a32a72e28b48f8c4c1883ddfeeeaa96f7d8e519"

[[package]]
name = "wasi"
version = "0.11.0+wasi-snapshot-preview1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9c8d87e72b64a3b4db28d11ce29237c246188f4f51057d65a7eab63b7987e423"

[[package]]
name = "wasm-bindgen"
version = "0.2.92"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4be2531df63900aeb2bca0daaaddec08491ee64ceecbee5076636a3b026795a8"
dependencies = [
 "cfg-if 1.0.0",
 "wasm-bindgen-macro",
]

[[package]]
name = "wasm-bindgen-backend"
version = "0.2.92"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "614d787b966d3989fa7bb98a654e369c762374fd3213d212cfc0251257e747da"
dependencies = [
 "bumpalo",
 "log",
 "once_cell",
 "proc-macro2",
 "quote",
 "syn 2.0.58",
 "wasm-bindgen-shared",
]

[[package]]
name = "wasm-bindgen-macro"
version = "0.2.92"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a1f8823de937b71b9460c0c34e25f3da88250760bec0ebac694b49997550d726"
dependencies = [
 "quote",
 "wasm-bindgen-macro-support",
]

[[package]]
name = "wasm-bindgen-macro-support"
version = "0.2.92"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e94f17b526d0a461a191c78ea52bbce64071ed5c04c9ffe424dcb38f74171bb7"
dependencies = [
 "proc-macro2",
 "quote",
 "syn 2.0.58",
 "wasm-bindgen-backend",
 "wasm-bindgen-shared",
]

[[package]]
name = "wasm-bindgen-shared"
version = "0.2.92"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "af190c94f2773fdb3729c55b007a722abb5384da03bc0986df4c289bf5567e96"

[[package]]
name = "web-sys"
version = "0.3.69"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "77afa9a11836342370f4817622a2f0f418b134426d91a82dfb48f532d2ec13ef"
dependencies = [
 "js-sys",
 "wasm-bindgen",
]

[[package]]
name = "webpki-roots"
version = "0.25.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5f20c57d8d7db6d3b86154206ae5d8fba62dd39573114de97c2cb0578251f8e1"

[[package]]
name = "weezl"
version = "0.1.8"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "53a85b86a771b1c87058196170769dd264f66c0782acf1ae6cc51bfd64b39082"

[[package]]
name = "which"
version = "3.1.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d011071ae14a2f6671d0b74080ae0cd8ebf3a6f8c9589a2cd45f23126fe29724"
dependencies = [
 "libc",
]

[[package]]
name = "wide"
version = "0.7.15"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "89beec544f246e679fc25490e3f8e08003bc4bf612068f325120dad4cea02c1c"
dependencies = [
 "bytemuck",
 "safe_arch",
]

[[package]]
name = "winapi"
version = "0.3.9"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5c839a674fcd7a98952e593242ea400abe93992746761e38641405d28b00f419"
dependencies = [
 "winapi-i686-pc-windows-gnu",
 "winapi-x86_64-pc-windows-gnu",
]

[[package]]
name = "winapi-i686-pc-windows-gnu"
version = "0.4.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ac3b87c63620426dd9b991e5ce0329eff545bccbbb34f3be09ff6fb6ab51b7b6"

[[package]]
name = "winapi-util"
version = "0.1.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f29e6f9198ba0d26b4c9f07dbe6f9ed633e1f3d5b8b414090084349e46a52596"
dependencies = [
 "winapi",
]

[[package]]
name = "winapi-x86_64-pc-windows-gnu"
version = "0.4.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "712e227841d057c1ee1cd2fb22fa7e5a5461ae8e48fa2ca79ec42cfc1931183f"

[[package]]
name = "windows-core"
version = "0.52.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "33ab640c8d7e35bf8ba19b884ba838ceb4fba93a4e8c65a9059d08afcfc683d9"
dependencies = [
 "windows-targets 0.52.4",
]

[[package]]
name = "windows-sys"
version = "0.48.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "677d2418bec65e3338edb076e806bc1ec15693c5d0104683f2efe857f61056a9"
dependencies = [
 "windows-targets 0.48.5",
]

[[package]]
name = "windows-sys"
version = "0.52.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "282be5f36a8ce781fad8c8ae18fa3f9beff57ec1b52cb3de0789201425d9a33d"
dependencies = [
 "windows-targets 0.52.4",
]

[[package]]
name = "windows-targets"
version = "0.48.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9a2fa6e2155d7247be68c096456083145c183cbbbc2764150dda45a87197940c"
dependencies = [
 "windows_aarch64_gnullvm 0.48.5",
 "windows_aarch64_msvc 0.48.5",
 "windows_i686_gnu 0.48.5",
 "windows_i686_msvc 0.48.5",
 "windows_x86_64_gnu 0.48.5",
 "windows_x86_64_gnullvm 0.48.5",
 "windows_x86_64_msvc 0.48.5",
]

[[package]]
name = "windows-targets"
version = "0.52.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7dd37b7e5ab9018759f893a1952c9420d060016fc19a472b4bb20d1bdd694d1b"
dependencies = [
 "windows_aarch64_gnullvm 0.52.4",
 "windows_aarch64_msvc 0.52.4",
 "windows_i686_gnu 0.52.4",
 "windows_i686_msvc 0.52.4",
 "windows_x86_64_gnu 0.52.4",
 "windows_x86_64_gnullvm 0.52.4",
 "windows_x86_64_msvc 0.52.4",
]

[[package]]
name = "windows_aarch64_gnullvm"
version = "0.48.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "2b38e32f0abccf9987a4e3079dfb67dcd799fb61361e53e2882c3cbaf0d905d8"

[[package]]
name = "windows_aarch64_gnullvm"
version = "0.52.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "bcf46cf4c365c6f2d1cc93ce535f2c8b244591df96ceee75d8e83deb70a9cac9"

[[package]]
name = "windows_aarch64_msvc"
version = "0.48.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "dc35310971f3b2dbbf3f0690a219f40e2d9afcf64f9ab7cc1be722937c26b4bc"

[[package]]
name = "windows_aarch64_msvc"
version = "0.52.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "da9f259dd3bcf6990b55bffd094c4f7235817ba4ceebde8e6d11cd0c5633b675"

[[package]]
name = "windows_i686_gnu"
version = "0.48.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a75915e7def60c94dcef72200b9a8e58e5091744960da64ec734a6c6e9b3743e"

[[package]]
name = "windows_i686_gnu"
version = "0.52.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b474d8268f99e0995f25b9f095bc7434632601028cf86590aea5c8a5cb7801d3"

[[package]]
name = "windows_i686_msvc"
version = "0.48.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8f55c233f70c4b27f66c523580f78f1004e8b5a8b659e05a4eb49d4166cca406"

[[package]]
name = "windows_i686_msvc"
version = "0.52.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "1515e9a29e5bed743cb4415a9ecf5dfca648ce85ee42e15873c3cd8610ff8e02"

[[package]]
name = "windows_x86_64_gnu"
version = "0.48.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "53d40abd2583d23e4718fddf1ebec84dbff8381c07cae67ff7768bbf19c6718e"

[[package]]
name = "windows_x86_64_gnu"
version = "0.52.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5eee091590e89cc02ad514ffe3ead9eb6b660aedca2183455434b93546371a03"

[[package]]
name = "windows_x86_64_gnullvm"
version = "0.48.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "0b7b52767868a23d5bab768e390dc5f5c55825b6d30b86c844ff2dc7414044cc"

[[package]]
name = "windows_x86_64_gnullvm"
version = "0.52.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "77ca79f2451b49fa9e2af39f0747fe999fcda4f5e241b2898624dca97a1f2177"

[[package]]
name = "windows_x86_64_msvc"
version = "0.48.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ed94fce61571a4006852b7389a063ab983c02eb1bb37b47f8272ce92d06d9538"

[[package]]
name = "windows_x86_64_msvc"
version = "0.52.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "32b752e52a2da0ddfbdbcc6fceadfeede4c939ed16d13e648833a61dfb611ed8"

[[package]]
name = "zeroize"
version = "1.3.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4756f7db3f7b5574938c3eb1c117038b8e07f95ee6718c0efad4ac21508f1efd"
dependencies = [
 "zeroize_derive",
]

[[package]]
name = "zeroize_derive"
version = "1.4.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ce36e65b0d2999d2aafac989fb249189a141aee1f53c612c1f37d72631959f69"
dependencies = [
 "proc-macro2",
 "quote",
 "syn 2.0.58",
]

[[package]]
name = "zune-inflate"
version = "0.2.54"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "73ab332fe2f6680068f3582b16a24f90ad7096d5d39b974d1c0aff0125116f02"
dependencies = [
 "simd-adler32",
]

[[package]]
name = "zwuevi"
version = "0.1.0"
source = "git+ssh://git@git.ins.jku.at/proj/digidow/rust-tor-controller.git#cb411c4f485c5daf56c2fdedc7014de75786fa44"
dependencies = [
 "base32",
 "base64 0.13.1",
 "ed25519-dalek",
 "rand 0.7.3",
 "serde",
 "serde_json",
 "sha3",
 "tokio",
]

sensor/Cargo.toml

[package]
name = "sensor"
version = "0.1.0"
edition = "2021"

See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html

[features]
default = ["tor", "save_images_on_sensor_push", "faceloc", "test"]
faceloc = []
tor = []
test = []
singledoor = []
save_images_on_sensor_push = ["face/vis"]
debug_vis = ["face/vis"]

[dependencies]
verifiable-credential-parser-rust = { git = "ssh://git@git.ins.jku.at/proj/digidow/verifiable-credential-parser-rust.git", version="0.3" }
sensor-lib = { git = "ssh://git@git.ins.jku.at/proj/digidow/sensor-lib.git", version="0.2" }
face = { git = "ssh://git@git.ins.jku.at/proj/digidow/face-lib.git", version="0.2" }
zwuevi = { git = "ssh://git@git.ins.jku.at/proj/digidow/rust-tor-controller.git", version="0.1" }
serde = { version="1.0", features= ["derive"] }
serde_json = "1.0"
clap = { version = "4.0", features = ["derive"] }
log = "0.4"
env_logger = "0.11"
opencv = { version = "0.88", features = ["clang-runtime"] } #, optional = true }
image = "0.24"
imageproc = "0.23"
uuid = { version = "1.2", features = ["v4", "serde"] }
base64 = "0.21"
chrono = "0.4"
json = "0.12"
ureq = { version = "2.5", features = ["json", "socks-proxy"] }
tokio = { version = "1.24", features = ["time", "rt-multi-thread"] }

[dev-dependencies]
float-cmp = "0.9"

sensor/.cargo/config

[net]
git-fetch-with-cli = true

sensor/flake.lock

{
 "nodes": {
 "fenix": {
 "inputs": {
 "nixpkgs": [
 "nixpkgs"
],
 "rust-analyzer-src": "rust-analyzer-src"
 },
 "locked": {
 "lastModified": 1700634196,
 "narHash": "sha256-isiaNN8rRC1Lg94VBX/jEp81ySPJdbsaCq46qYv2eBQ=",
 "owner": "nix-community",
 "repo": "fenix",
 "rev": "d37c158257d4950513e25aac8debe81d88a49b97",
 "type": "github"
 },
 "original": {
 "owner": "nix-community",
 "repo": "fenix",
 "type": "github"
 }
 },
 "naersk": {
 "inputs": {
 "nixpkgs": "nixpkgs"
 },
 "locked": {
 "lastModified": 1698420672,
 "narHash": "sha256-/TdeHMPRjjdJub7p7+w55vyABrsJlt5QkznPYy55vKA=",
 "owner": "nix-community",
 "repo": "naersk",
 "rev": "aeb58d5e8faead8980a807c840232697982d47b9",
 "type": "github"
 },
 "original": {
 "owner": "nix-community",
 "repo": "naersk",
 "type": "github"
 }
 },
 "nix-filter": {
 "locked": {
 "lastModified": 1694857738,
 "narHash": "sha256-bxxNyLHjhu0N8T3REINXQ2ZkJco0ABFPn6PIe2QUfqo=",
 "owner": "numtide",
 "repo": "nix-filter",
 "rev": "41fd48e00c22b4ced525af521ead8792402de0ea",
 "type": "github"
 },
 "original": {
 "owner": "numtide",
 "repo": "nix-filter",
 "type": "github"
 }
 },
 "nixpkgs": {
 "locked": {
 "lastModified": 1700538105,
 "narHash": "sha256-uZhOCmwv8VupEmPZm3erbr9XXmyg7K67Ul3+Rx2XMe0=",
 "owner": "NixOS",
 "repo": "nixpkgs",
 "rev": "51a01a7e5515b469886c120e38db325c96694c2f",
 "type": "github"
 },
 "original": {
 "id": "nixpkgs",
 "type": "indirect"
 }
 },
 "nixpkgs-flatbuffers": {
 "locked": {
 "lastModified": 1650308445,
 "narHash": "sha256-3muuhz3fjtF1bz32UXOYCho51E8JSeEwo2iDZFQJdXo=",
 "owner": "nixOS",
 "repo": "nixpkgs",
 "rev": "d1c3fea7ecbed758168787fe4e4a3157e52bc808",
 "type": "github"
 },
 "original": {
 "owner": "nixOS",
 "repo": "nixpkgs",
 "rev": "d1c3fea7ecbed758168787fe4e4a3157e52bc808",
 "type": "github"
 }
 },
 "nixpkgs_2": {
 "locked": {
 "lastModified": 1686519857,
 "narHash": "sha256-VkBhuq67aXXiCoEmicziuDLUPPjeOTLQoj6OeVai5zM=",
 "owner": "nixOS",
 "repo": "nixpkgs",
 "rev": "6b1b72c0f887a478a5aac355674ff6df0fc44f44",
 "type": "github"
 },
 "original": {
 "owner": "nixOS",
 "repo": "nixpkgs",
 "rev": "6b1b72c0f887a478a5aac355674ff6df0fc44f44",
 "type": "github"
 }
 },
 "root": {
 "inputs": {
 "fenix": "fenix",
 "naersk": "naersk",
 "nix-filter": "nix-filter",
 "nixpkgs": "nixpkgs_2",
 "nixpkgs-flatbuffers": "nixpkgs-flatbuffers",
 "utils": "utils"
 }
 },
 "rust-analyzer-src": {
 "flake": false,
 "locked": {
 "lastModified": 1700578757,
 "narHash": "sha256-MvoN+gR/UbbVpKBCHw+nnvOf0m9bPDUNFtxJdHaMv/4=",
 "owner": "rust-lang",
 "repo": "rust-analyzer",
 "rev": "45136511a5b4f6b216aba371f541fb2251868c2b",
 "type": "github"
 },
 "original": {
 "owner": "rust-lang",
 "ref": "nightly",
 "repo": "rust-analyzer",
 "type": "github"
 }
 },
 "systems": {
 "locked": {
 "lastModified": 1681028828,
 "narHash": "sha256-Vy1rq5AaRuLzOxct8nz4T6wlgyUR7zLU309k9mBC768=",
 "owner": "nix-systems",
 "repo": "default",
 "rev": "da67096a3b9bf56a91d16901293e51ba5b49a27e",
 "type": "github"
 },
 "original": {
 "owner": "nix-systems",
 "repo": "default",
 "type": "github"
 }
 },
 "utils": {
 "inputs": {
 "systems": "systems"
 },
 "locked": {
 "lastModified": 1694529238,
 "narHash": "sha256-zsNZZGTGnMOf9YpHKJqMSsa0dXbfmxeoJ7xHlrt+xmY=",
 "owner": "numtide",
 "repo": "flake-utils",
 "rev": "ff7b65b44d01cf9ba6a71320833626af21126384",
 "type": "github"
 },
 "original": {
 "owner": "numtide",
 "repo": "flake-utils",
 "type": "github"
 }
 }
 },
 "root": "root",
 "version": 7
}

sensor/.vscode/launch.json

{
 // Use IntelliSense to learn about possible attributes.
 // Hover to view descriptions of existing attributes.
 // For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
 "version": "0.2.0",
 "configurations": [
 {
 "type": "lldb",
 "request": "launch",
 "name": "Debug executable 'sensor'",
 "cargo": {
 "args": [
 "build",
 "--bin=sensor",
 "--package=sensor",
],
 "filter": {
 "name": "sensor",
 "kind": "bin"
 }
 },
 "args": [],
 "cwd": "${workspaceFolder}"
 },
 {
 "type": "lldb",
 "request": "launch",
 "name": "Debug unit tests in executable 'sensor'",
 "cargo": {
 "args": [
 "test",
 "--no-run",
 "--bin=sensor",
 "--package=sensor"
],
 "filter": {
 "name": "sensor",
 "kind": "bin"
 }
 },
 "args": [],
 "cwd": "${workspaceFolder}"
 }
]
}

sensor/.vscode/tasks.json

{
 "version": "2.0.0",
 "tasks": [{
 "label": "cargo build",
 "type": "shell",
 "command": "cargo build",
 "args": [],
 "group": {
 "kind": "build",
 "isDefault": true
 }
 },
 {
 "label": "cargo run",
 "type": "shell",
 "command": "cargo",
 "args": [
 "run"
 // "--release",
 // "--",
 // "arg1"
],
 "group": {
 "kind": "build",
 "isDefault": true
 }
 },
 {
 "label": "cargo test",
 "type": "shell",
 "command": "cargo",
 "args": [
 "test"
 // "--release",
 // "--",
 // "arg1"
],
 "group": {
 "kind": "build",
 "isDefault": true
 }
 }]
 }

sensor-lib/flake.nix

{
 inputs = {
 flock-of-flakes = {
 type = "git";
 url = "https://git.ins.jku.at/proj/digidow/flock-of-flakes.git";
 };
 naersk = {
 url = "github:nix-community/naersk";
 inputs.nixpkgs.follows = "nixpkgs";
 };
 nixpkgs.follows = "flock-of-flakes/nixpkgs";
 utils.follows = "flock-of-flakes/utils";
 };

 outputs = { self, flock-of-flakes, naersk, nixpkgs, utils }:
 utils.lib.eachDefaultSystem (system:
 let
 pkgs = import nixpkgs { inherit system; };
 naersk-lib = pkgs.callPackage naersk {};
 pname = "sensor-lib";
 in {
 defaultPackage = naersk-lib.buildPackage {
 name = pname;
 version = "0.1.0";
 description = "sensor-lib";
 root = ./.;
 src = ./.;
	nativeBuildInputs = [
 pkgs.pkg-config
];
 doCheck = true; # run the tests (nix logs to view output logs)
	buildInputs = with pkgs; [
 openssl.dev
];
 };
 });
}

sensor-lib/tests/integration_test.rs

sensor-lib/.gitignore

target/

sensor-lib/src/vc.rs

sensor-lib/src/lib.rs

sensor-lib/src/types.rs

sensor-lib/src/sensorpush.rs

sensor-lib/src/rest.rs

sensor-lib/src/registration.rs

sensor-lib/.gitlab-ci.yml

default:
 tags:
 - nix-container-shell

stages:
 - buildandtest

nixbuild:
 stage: buildandtest
 script:
 - nix build --print-build-logs

sensor-lib/CHANGELOG.md

Changelog

All notable changes to this project will be documented in this file.

The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/), and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).

0.2.2 - 2024-04-10

Added

- Generating VC with absolute latlng coordinates + name

0.2.0 - 2024-03-12

Added

- Logs the hash of the embedding for each registration, requires the `std::hash::Hash` trait to be implemented

0.1.9 - 2024-03-06

Removed

- `gk` feature, as this is now handled in a more structured way by allowing users of this lib to specify custom VCs

0.1.8 - 2024-01-31

Added

- `sensing_received_emb()` function to get hashed embedding of all identities where a sensor push has been sent to

0.1.7 - 2024-01-17

Changed

- Better error logging for registration
- Added location data VC

0.1.6 - 2023-11-29

Added

- `From<(Secretkey, PublicKey)>` trait implemented for `SensorBBSKey`
- Use proper BBS Key generation method

0.1.5 - 2023-11-27

Removed

- Removed `rest_port` in Sensor Builder, will now use a port which is available

0.1.4 - 2023-11-27

Changed

- `sensing_received[_loc]` now returns if there has been a match with at least one of the registered identities.

0.1.3 - 2023-11-27

Added

- (Temporarily) added `sensing_received_loc` function to send location data to GK

Removed

- Unnecessary default for location

0.1.2 - 2023-11-24

Added

- Capability to use library without tor service.
- Added (long, and thus skipped by default) test for verifying correct working of registration removal after certain timeout
- Added possibility to send heartbeats, even if no tor service is used
- Documentation for available features
- Only starting rest service, if compiled with feature

Changed

- `tor_timeout_in_seconds` got more appropriately renamed to `sensorpush_timeout_in_seconds`

Fixed

- (Ignored) test now uses current version of our Digidow VP (`embedding` instead of `data`)

Removed

- Unnecessary (dev-)dependencies
- Removed `rest` feature: There's no point for using this lib if you don't have a way to allow for registrations.

0.1.1 - 2023-11-23

Added

- Possiblity to specify port of rest service in the `SensorBuilder::set_rest_port(..)`.

Changed

- `SensorBuilder::start()` is not async anymore

sensor-lib/LICENSE

 EUROPEAN UNION PUBLIC LICENCE v. 1.2
 EUPL © the European Union 2007, 2016

This European Union Public Licence (the ‘EUPL’) applies to the Work (as defined
below) which is provided under the terms of this Licence. Any use of the Work,
other than as authorised under this Licence is prohibited (to the extent such
use is covered by a right of the copyright holder of the Work).

The Work is provided under the terms of this Licence when the Licensor (as
defined below) has placed the following notice immediately following the
copyright notice for the Work:

 Licensed under the EUPL

or has expressed by any other means his willingness to license under the EUPL.

1. Definitions

In this Licence, the following terms have the following meaning:

- ‘The Licence’: this Licence.

- ‘The Original Work’: the work or software distributed or communicated by the
 Licensor under this Licence, available as Source Code and also as Executable
 Code as the case may be.

- ‘Derivative Works’: the works or software that could be created by the
 Licensee, based upon the Original Work or modifications thereof. This Licence
 does not define the extent of modification or dependence on the Original Work
 required in order to classify a work as a Derivative Work; this extent is
 determined by copyright law applicable in the country mentioned in Article 15.

- ‘The Work’: the Original Work or its Derivative Works.

- ‘The Source Code’: the human-readable form of the Work which is the most
 convenient for people to study and modify.

- ‘The Executable Code’: any code which has generally been compiled and which is
 meant to be interpreted by a computer as a program.

- ‘The Licensor’: the natural or legal person that distributes or communicates
 the Work under the Licence.

- ‘Contributor(s)’: any natural or legal person who modifies the Work under the
 Licence, or otherwise contributes to the creation of a Derivative Work.

- ‘The Licensee’ or ‘You’: any natural or legal person who makes any usage of
 the Work under the terms of the Licence.

- ‘Distribution’ or ‘Communication’: any act of selling, giving, lending,
 renting, distributing, communicating, transmitting, or otherwise making
 available, online or offline, copies of the Work or providing access to its
 essential functionalities at the disposal of any other natural or legal
 person.

2. Scope of the rights granted by the Licence

The Licensor hereby grants You a worldwide, royalty-free, non-exclusive,
sublicensable licence to do the following, for the duration of copyright vested
in the Original Work:

- use the Work in any circumstance and for all usage,
- reproduce the Work,
- modify the Work, and make Derivative Works based upon the Work,
- communicate to the public, including the right to make available or display
 the Work or copies thereof to the public and perform publicly, as the case may
 be, the Work,
- distribute the Work or copies thereof,
- lend and rent the Work or copies thereof,
- sublicense rights in the Work or copies thereof.

Those rights can be exercised on any media, supports and formats, whether now
known or later invented, as far as the applicable law permits so.

In the countries where moral rights apply, the Licensor waives his right to
exercise his moral right to the extent allowed by law in order to make effective
the licence of the economic rights here above listed.

The Licensor grants to the Licensee royalty-free, non-exclusive usage rights to
any patents held by the Licensor, to the extent necessary to make use of the
rights granted on the Work under this Licence.

3. Communication of the Source Code

The Licensor may provide the Work either in its Source Code form, or as
Executable Code. If the Work is provided as Executable Code, the Licensor
provides in addition a machine-readable copy of the Source Code of the Work
along with each copy of the Work that the Licensor distributes or indicates, in
a notice following the copyright notice attached to the Work, a repository where
the Source Code is easily and freely accessible for as long as the Licensor
continues to distribute or communicate the Work.

4. Limitations on copyright

Nothing in this Licence is intended to deprive the Licensee of the benefits from
any exception or limitation to the exclusive rights of the rights owners in the
Work, of the exhaustion of those rights or of other applicable limitations
thereto.

5. Obligations of the Licensee

The grant of the rights mentioned above is subject to some restrictions and
obligations imposed on the Licensee. Those obligations are the following:

Attribution right: The Licensee shall keep intact all copyright, patent or
trademarks notices and all notices that refer to the Licence and to the
disclaimer of warranties. The Licensee must include a copy of such notices and a
copy of the Licence with every copy of the Work he/she distributes or
communicates. The Licensee must cause any Derivative Work to carry prominent
notices stating that the Work has been modified and the date of modification.

Copyleft clause: If the Licensee distributes or communicates copies of the
Original Works or Derivative Works, this Distribution or Communication will be
done under the terms of this Licence or of a later version of this Licence
unless the Original Work is expressly distributed only under this version of the
Licence — for example by communicating ‘EUPL v. 1.2 only’. The Licensee
(becoming Licensor) cannot offer or impose any additional terms or conditions on
the Work or Derivative Work that alter or restrict the terms of the Licence.

Compatibility clause: If the Licensee Distributes or Communicates Derivative
Works or copies thereof based upon both the Work and another work licensed under
a Compatible Licence, this Distribution or Communication can be done under the
terms of this Compatible Licence. For the sake of this clause, ‘Compatible
Licence’ refers to the licences listed in the appendix attached to this Licence.
Should the Licensee's obligations under the Compatible Licence conflict with
his/her obligations under this Licence, the obligations of the Compatible
Licence shall prevail.

Provision of Source Code: When distributing or communicating copies of the Work,
the Licensee will provide a machine-readable copy of the Source Code or indicate
a repository where this Source will be easily and freely available for as long
as the Licensee continues to distribute or communicate the Work.

Legal Protection: This Licence does not grant permission to use the trade names,
trademarks, service marks, or names of the Licensor, except as required for
reasonable and customary use in describing the origin of the Work and
reproducing the content of the copyright notice.

6. Chain of Authorship

The original Licensor warrants that the copyright in the Original Work granted
hereunder is owned by him/her or licensed to him/her and that he/she has the
power and authority to grant the Licence.

Each Contributor warrants that the copyright in the modifications he/she brings
to the Work are owned by him/her or licensed to him/her and that he/she has the
power and authority to grant the Licence.

Each time You accept the Licence, the original Licensor and subsequent
Contributors grant You a licence to their contributions to the Work, under the
terms of this Licence.

7. Disclaimer of Warranty

The Work is a work in progress, which is continuously improved by numerous
Contributors. It is not a finished work and may therefore contain defects or
‘bugs’ inherent to this type of development.

For the above reason, the Work is provided under the Licence on an ‘as is’ basis
and without warranties of any kind concerning the Work, including without
limitation merchantability, fitness for a particular purpose, absence of defects
or errors, accuracy, non-infringement of intellectual property rights other than
copyright as stated in Article 6 of this Licence.

This disclaimer of warranty is an essential part of the Licence and a condition
for the grant of any rights to the Work.

8. Disclaimer of Liability

Except in the cases of wilful misconduct or damages directly caused to natural
persons, the Licensor will in no event be liable for any direct or indirect,
material or moral, damages of any kind, arising out of the Licence or of the use
of the Work, including without limitation, damages for loss of goodwill, work
stoppage, computer failure or malfunction, loss of data or any commercial
damage, even if the Licensor has been advised of the possibility of such damage.
However, the Licensor will be liable under statutory product liability laws as
far such laws apply to the Work.

9. Additional agreements

While distributing the Work, You may choose to conclude an additional agreement,
defining obligations or services consistent with this Licence. However, if
accepting obligations, You may act only on your own behalf and on your sole
responsibility, not on behalf of the original Licensor or any other Contributor,
and only if You agree to indemnify, defend, and hold each Contributor harmless
for any liability incurred by, or claims asserted against such Contributor by
the fact You have accepted any warranty or additional liability.

10. Acceptance of the Licence

The provisions of this Licence can be accepted by clicking on an icon ‘I agree’
placed under the bottom of a window displaying the text of this Licence or by
affirming consent in any other similar way, in accordance with the rules of
applicable law. Clicking on that icon indicates your clear and irrevocable
acceptance of this Licence and all of its terms and conditions.

Similarly, you irrevocably accept this Licence and all of its terms and
conditions by exercising any rights granted to You by Article 2 of this Licence,
such as the use of the Work, the creation by You of a Derivative Work or the
Distribution or Communication by You of the Work or copies thereof.

11. Information to the public

In case of any Distribution or Communication of the Work by means of electronic
communication by You (for example, by offering to download the Work from a
remote location) the distribution channel or media (for example, a website) must
at least provide to the public the information requested by the applicable law
regarding the Licensor, the Licence and the way it may be accessible, concluded,
stored and reproduced by the Licensee.

12. Termination of the Licence

The Licence and the rights granted hereunder will terminate automatically upon
any breach by the Licensee of the terms of the Licence.

Such a termination will not terminate the licences of any person who has
received the Work from the Licensee under the Licence, provided such persons
remain in full compliance with the Licence.

13. Miscellaneous

Without prejudice of Article 9 above, the Licence represents the complete
agreement between the Parties as to the Work.

If any provision of the Licence is invalid or unenforceable under applicable
law, this will not affect the validity or enforceability of the Licence as a
whole. Such provision will be construed or reformed so as necessary to make it
valid and enforceable.

The European Commission may publish other linguistic versions or new versions of
this Licence or updated versions of the Appendix, so far this is required and
reasonable, without reducing the scope of the rights granted by the Licence. New
versions of the Licence will be published with a unique version number.

All linguistic versions of this Licence, approved by the European Commission,
have identical value. Parties can take advantage of the linguistic version of
their choice.

14. Jurisdiction

Without prejudice to specific agreement between parties,

- any litigation resulting from the interpretation of this License, arising
 between the European Union institutions, bodies, offices or agencies, as a
 Licensor, and any Licensee, will be subject to the jurisdiction of the Court
 of Justice of the European Union, as laid down in article 272 of the Treaty on
 the Functioning of the European Union,

- any litigation arising between other parties and resulting from the
 interpretation of this License, will be subject to the exclusive jurisdiction
 of the competent court where the Licensor resides or conducts its primary
 business.

15. Applicable Law

Without prejudice to specific agreement between parties,

- this Licence shall be governed by the law of the European Union Member State
 where the Licensor has his seat, resides or has his registered office,

- this licence shall be governed by Belgian law if the Licensor has no seat,
 residence or registered office inside a European Union Member State.

Appendix

‘Compatible Licences’ according to Article 5 EUPL are:

- GNU General Public License (GPL) v. 2, v. 3
- GNU Affero General Public License (AGPL) v. 3
- Open Software License (OSL) v. 2.1, v. 3.0
- Eclipse Public License (EPL) v. 1.0
- CeCILL v. 2.0, v. 2.1
- Mozilla Public Licence (MPL) v. 2
- GNU Lesser General Public Licence (LGPL) v. 2.1, v. 3
- Creative Commons Attribution-ShareAlike v. 3.0 Unported (CC BY-SA 3.0) for
 works other than software
- European Union Public Licence (EUPL) v. 1.1, v. 1.2
- Québec Free and Open-Source Licence — Reciprocity (LiLiQ-R) or Strong
 Reciprocity (LiLiQ-R+).

The European Commission may update this Appendix to later versions of the above
licences without producing a new version of the EUPL, as long as they provide
the rights granted in Article 2 of this Licence and protect the covered Source
Code from exclusive appropriation.

All other changes or additions to this Appendix require the production of a new
EUPL version.

sensor-lib/README.md

Digidow Sensor Library

The Digidow Sensor Library is a Rust crate providing a suite of tools for interfacing with Digidow sensors. This library is tailored to handle registration of entities, expose a REST API service, and push sensor notifications, all while incorporating Verifiable Presentations (VPs) for secure data exchange.

Key Features

- **Registration Management:** Handles the lifecycle of entity registrations with optional auto-purging to prevent data accumulation.
- **REST Interface:** A RESTful service interface for managing registrations and maintaining a consistent heartbeat.
- **Sensor Push Notifications:** Alerts a Personal Identity Agent (PIA) through a registered callback URL upon person detection.
- **Verifiable Presentations:** Leverages VPs to ensure data integrity and trustworthiness in exchanges.

Usage

Add this library as dependency to your crate by adding the following line to `Cargo.toml`:
```
sensor-lib = { git = "ssh://git@git.ins.jku.at/proj/digidow/sensor-lib.git", version="0.1" }
```

This library uses semantic versioning (thus it's recommended to specify MAJOR and MINOR, but not the PATCH version). For details about changes see `CHANGELOG.md`.

In order to use the `git` executable (and therefore e.g. use your ssh keys, you need to create/append the `.cargo/config` file with this content:
```
[net]
git-fetch-with-cli = true
```

Explained in detail in the Rust docs (`cargo doc --open`) after adding the library to your crate (`sensor-lib = { git = "ssh://git@git.ins.jku.at/proj/digidow/sensor-lib.git", version="0.1.0" }`).

License

Licensed under the EUPL, Version 1.2 or – as soon they will be approved by the European Commission - subsequent versions of the EUPL (the "Licence"). You may not use this work except in compliance with the Licence.

License: [European Union Public License v1.2](https://joinup.ec.europa.eu/software/page/eupl)

Acknowledgement

This work has been carried out within the scope of Digidow, the Christian Doppler Laboratory for Private Digital Authentication in the Physical World. We gratefully acknowledge financial support by the Austrian Federal Ministry of Labour and Economy, the National Foundation for Research, Technology and Development, the Christian Doppler Research Association, 3 Banken IT GmbH, ekey biometric systems GmbH, Kepler Universitätsklinikum GmbH, NXP Semiconductors Austria GmbH & Co KG, and Österreichische Staatsdruckerei GmbH.

sensor-lib/Cargo.lock

This file is automatically @generated by Cargo.
It is not intended for manual editing.
version = 3

[[package]]
name = "addr2line"
version = "0.21.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8a30b2e23b9e17a9f90641c7ab1549cd9b44f296d3ccbf309d2863cfe398a0cb"
dependencies = [
 "gimli",
]

[[package]]
name = "adler"
version = "1.0.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f26201604c87b1e01bd3d98f8d5d9a8fcbb815e8cedb41ffccbeb4bf593a35fe"

[[package]]
name = "android-tzdata"
version = "0.1.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e999941b234f3131b00bc13c22d06e8c5ff726d1b6318ac7eb276997bbb4fef0"

[[package]]
name = "android_system_properties"
version = "0.1.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "819e7219dbd41043ac279b19830f2efc897156490d7fd6ea916720117ee66311"
dependencies = [
 "libc",
]

[[package]]
name = "arrayref"
version = "0.3.7"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "6b4930d2cb77ce62f89ee5d5289b4ac049559b1c45539271f5ed4fdc7db34545"

[[package]]
name = "autocfg"
version = "1.1.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d468802bab17cbc0cc575e9b053f41e72aa36bfa6b7f55e3529ffa43161b97fa"

[[package]]
name = "backtrace"
version = "0.3.69"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "2089b7e3f35b9dd2d0ed921ead4f6d318c27680d4a5bd167b3ee120edb105837"
dependencies = [
 "addr2line",
 "cc",
 "cfg-if",
 "libc",
 "miniz_oxide",
 "object",
 "rustc-demangle",
]

[[package]]
name = "base32"
version = "0.4.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "23ce669cd6c8588f79e15cf450314f9638f967fc5770ff1c7c1deb0925ea7cfa"

[[package]]
name = "base64"
version = "0.13.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9e1b586273c5702936fe7b7d6896644d8be71e6314cfe09d3167c95f712589e8"

[[package]]
name = "base64"
version = "0.21.7"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9d297deb1925b89f2ccc13d7635fa0714f12c87adce1c75356b39ca9b7178567"

[[package]]
name = "bbs"
version = "0.4.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7e24ff98879bedb7fe7b3ce0c86268baca8468e8ce405d44459dbaf0b26ac9ca"
dependencies = [
 "arrayref",
 "blake2",
 "failure",
 "ff-zeroize",
 "hex",
 "hkdf",
 "pairing-plus",
 "rand 0.7.3",
 "rayon",
 "serde",
 "zeroize",
]

[[package]]
name = "bitflags"
version = "1.3.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "bef38d45163c2f1dde094a7dfd33ccf595c92905c8f8f4fdc18d06fb1037718a"

[[package]]
name = "bitflags"
version = "2.4.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ed570934406eb16438a4e976b1b4500774099c13b8cb96eec99f620f05090ddf"

[[package]]
name = "blake2"
version = "0.8.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "94cb07b0da6a73955f8fb85d24c466778e70cda767a568229b104f0264089330"
dependencies = [
 "byte-tools",
 "crypto-mac",
 "digest 0.8.1",
 "opaque-debug 0.2.3",
]

[[package]]
name = "block-buffer"
version = "0.9.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4152116fd6e9dadb291ae18fc1ec3575ed6d84c29642d97890f4b4a3417297e4"
dependencies = [
 "generic-array 0.14.7",
]

[[package]]
name = "block-buffer"
version = "0.10.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3078c7629b62d3f0439517fa394996acacc5cbc91c5a20d8c658e77abd503a71"
dependencies = [
 "generic-array 0.14.7",
]

[[package]]
name = "bumpalo"
version = "3.15.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c764d619ca78fccbf3069b37bd7af92577f044bb15236036662d79b6559f25b7"

[[package]]
name = "byte-tools"
version = "0.3.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e3b5ca7a04898ad4bcd41c90c5285445ff5b791899bb1b0abdd2a2aa791211d7"

[[package]]
name = "byteorder"
version = "1.5.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "1fd0f2584146f6f2ef48085050886acf353beff7305ebd1ae69500e27c67f64b"

[[package]]
name = "bytes"
version = "1.5.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a2bd12c1caf447e69cd4528f47f94d203fd2582878ecb9e9465484c4148a8223"

[[package]]
name = "cc"
version = "1.0.86"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7f9fa1897e4325be0d68d48df6aa1a71ac2ed4d27723887e7754192705350730"

[[package]]
name = "cfg-if"
version = "1.0.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "baf1de4339761588bc0619e3cbc0120ee582ebb74b53b4efbf79117bd2da40fd"

[[package]]
name = "chrono"
version = "0.4.34"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5bc015644b92d5890fab7489e49d21f879d5c990186827d42ec511919404f38b"
dependencies = [
 "android-tzdata",
 "iana-time-zone",
 "js-sys",
 "num-traits",
 "wasm-bindgen",
 "windows-targets 0.52.0",
]

[[package]]
name = "core-foundation"
version = "0.9.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "91e195e091a93c46f7102ec7818a2aa394e1e1771c3ab4825963fa03e45afb8f"
dependencies = [
 "core-foundation-sys",
 "libc",
]

[[package]]
name = "core-foundation-sys"
version = "0.8.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "06ea2b9bc92be3c2baa9334a323ebca2d6f074ff852cd1d7b11064035cd3868f"

[[package]]
name = "cpufeatures"
version = "0.2.12"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "53fe5e26ff1b7aef8bca9c6080520cfb8d9333c7568e1829cef191a9723e5504"
dependencies = [
 "libc",
]

[[package]]
name = "crc32fast"
version = "1.4.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b3855a8a784b474f333699ef2bbca9db2c4a1f6d9088a90a2d25b1eb53111eaa"
dependencies = [
 "cfg-if",
]

[[package]]
name = "crossbeam-deque"
version = "0.8.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "613f8cc01fe9cf1a3eb3d7f488fd2fa8388403e97039e2f73692932e291a770d"
dependencies = [
 "crossbeam-epoch",
 "crossbeam-utils",
]

[[package]]
name = "crossbeam-epoch"
version = "0.9.18"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5b82ac4a3c2ca9c3460964f020e1402edd5753411d7737aa39c3714ad1b5420e"
dependencies = [
 "crossbeam-utils",
]

[[package]]
name = "crossbeam-utils"
version = "0.8.19"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "248e3bacc7dc6baa3b21e405ee045c3047101a49145e7e9eca583ab4c2ca5345"

[[package]]
name = "crypto-common"
version = "0.1.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "1bfb12502f3fc46cca1bb51ac28df9d618d813cdc3d2f25b9fe775a34af26bb3"
dependencies = [
 "generic-array 0.14.7",
 "typenum",
]

[[package]]
name = "crypto-mac"
version = "0.7.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4434400df11d95d556bac068ddfedd482915eb18fe8bea89bc80b6e4b1c179e5"
dependencies = [
 "generic-array 0.12.4",
 "subtle 1.0.0",
]

[[package]]
name = "curve25519-dalek"
version = "3.2.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "90f9d052967f590a76e62eb387bd0bbb1b000182c3cefe5364db6b7211651bc0"
dependencies = [
 "byteorder",
 "digest 0.9.0",
 "rand_core 0.5.1",
 "subtle 2.5.0",
 "zeroize",
]

[[package]]
name = "digest"
version = "0.8.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f3d0c8c8752312f9713efd397ff63acb9f85585afbf179282e720e7704954dd5"
dependencies = [
 "generic-array 0.12.4",
]

[[package]]
name = "digest"
version = "0.9.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d3dd60d1080a57a05ab032377049e0591415d2b31afd7028356dbf3cc6dcb066"
dependencies = [
 "generic-array 0.14.7",
]

[[package]]
name = "digest"
version = "0.10.7"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9ed9a281f7bc9b7576e61468ba615a66a5c8cfdff42420a70aa82701a3b1e292"
dependencies = [
 "block-buffer 0.10.4",
 "crypto-common",
]

[[package]]
name = "ed25519"
version = "1.5.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "91cff35c70bba8a626e3185d8cd48cc11b5437e1a5bcd15b9b5fa3c64b6dfee7"
dependencies = [
 "signature",
]

[[package]]
name = "ed25519-dalek"
version = "1.0.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c762bae6dcaf24c4c84667b8579785430908723d5c889f469d76a41d59cc7a9d"
dependencies = [
 "curve25519-dalek",
 "ed25519",
 "rand 0.7.3",
 "serde",
 "sha2",
 "zeroize",
]

[[package]]
name = "either"
version = "1.10.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "11157ac094ffbdde99aa67b23417ebdd801842852b500e395a45a9c0aac03e4a"

[[package]]
name = "encoding_rs"
version = "0.8.33"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7268b386296a025e474d5140678f75d6de9493ae55a5d709eeb9dd08149945e1"
dependencies = [
 "cfg-if",
]

[[package]]
name = "equivalent"
version = "1.0.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5443807d6dff69373d433ab9ef5378ad8df50ca6298caf15de6e52e24aaf54d5"

[[package]]
name = "errno"
version = "0.3.8"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a258e46cdc063eb8519c00b9fc845fc47bcfca4130e2f08e88665ceda8474245"
dependencies = [
 "libc",
 "windows-sys 0.52.0",
]

[[package]]
name = "failure"
version = "0.1.8"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d32e9bd16cc02eae7db7ef620b392808b89f6a5e16bb3497d159c6b92a0f4f86"
dependencies = [
 "backtrace",
 "failure_derive",
]

[[package]]
name = "failure_derive"
version = "0.1.8"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "aa4da3c766cd7a0db8242e326e9e4e081edd567072893ed320008189715366a4"
dependencies = [
 "proc-macro2",
 "quote",
 "syn 1.0.109",
 "synstructure",
]

[[package]]
name = "fastrand"
version = "2.0.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "25cbce373ec4653f1a01a31e8a5e5ec0c622dc27ff9c4e6606eefef5cbbed4a5"

[[package]]
name = "ff-zeroize"
version = "0.6.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c02169a2e8515aa316ce516eaaf6318a76617839fbf904073284bc2576b029ee"
dependencies = [
 "byteorder",
 "ff_derive-zeroize",
 "rand_core 0.5.1",
 "zeroize",
]

[[package]]
name = "ff_derive-zeroize"
version = "0.6.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b24d4059bc0d0a0bf26b740aa21af1f96a984f0ab7a21356d00b32475388b53a"
dependencies = [
 "num-bigint",
 "num-integer",
 "num-traits",
 "proc-macro2",
 "quote",
 "syn 1.0.109",
]

[[package]]
name = "flate2"
version = "1.0.28"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "46303f565772937ffe1d394a4fac6f411c6013172fadde9dcdb1e147a086940e"
dependencies = [
 "crc32fast",
 "miniz_oxide",
]

[[package]]
name = "fnv"
version = "1.0.7"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3f9eec918d3f24069decb9af1554cad7c880e2da24a9afd88aca000531ab82c1"

[[package]]
name = "foreign-types"
version = "0.3.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f6f339eb8adc052cd2ca78910fda869aefa38d22d5cb648e6485e4d3fc06f3b1"
dependencies = [
 "foreign-types-shared",
]

[[package]]
name = "foreign-types-shared"
version = "0.1.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "00b0228411908ca8685dba7fc2cdd70ec9990a6e753e89b6ac91a84c40fbaf4b"

[[package]]
name = "form_urlencoded"
version = "1.2.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e13624c2627564efccf4934284bdd98cbaa14e79b0b5a141218e507b3a823456"
dependencies = [
 "percent-encoding",
]

[[package]]
name = "fuchsia-cprng"
version = "0.1.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a06f77d526c1a601b7c4cdd98f54b5eaabffc14d5f2f0296febdc7f357c6d3ba"

[[package]]
name = "futures-channel"
version = "0.3.30"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "eac8f7d7865dcb88bd4373ab671c8cf4508703796caa2b1985a9ca867b3fcb78"
dependencies = [
 "futures-core",
]

[[package]]
name = "futures-core"
version = "0.3.30"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "dfc6580bb841c5a68e9ef15c77ccc837b40a7504914d52e47b8b0e9bbda25a1d"

[[package]]
name = "futures-sink"
version = "0.3.30"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9fb8e00e87438d937621c1c6269e53f536c14d3fbd6a042bb24879e57d474fb5"

[[package]]
name = "futures-task"
version = "0.3.30"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "38d84fa142264698cdce1a9f9172cf383a0c82de1bddcf3092901442c4097004"

[[package]]
name = "futures-util"
version = "0.3.30"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3d6401deb83407ab3da39eba7e33987a73c3df0c82b4bb5813ee871c19c41d48"
dependencies = [
 "futures-core",
 "futures-task",
 "pin-project-lite",
 "pin-utils",
]

[[package]]
name = "generic-array"
version = "0.12.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ffdf9f34f1447443d37393cc6c2b8313aebddcd96906caf34e54c68d8e57d7bd"
dependencies = [
 "typenum",
]

[[package]]
name = "generic-array"
version = "0.14.7"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "85649ca51fd72272d7821adaf274ad91c288277713d9c18820d8499a7ff69e9a"
dependencies = [
 "typenum",
 "version_check",
]

[[package]]
name = "getrandom"
version = "0.1.16"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8fc3cb4d91f53b50155bdcfd23f6a4c39ae1969c2ae85982b135750cccaf5fce"
dependencies = [
 "cfg-if",
 "libc",
 "wasi 0.9.0+wasi-snapshot-preview1",
]

[[package]]
name = "getrandom"
version = "0.2.12"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "190092ea657667030ac6a35e305e62fc4dd69fd98ac98631e5d3a2b1575a12b5"
dependencies = [
 "cfg-if",
 "libc",
 "wasi 0.11.0+wasi-snapshot-preview1",
]

[[package]]
name = "gimli"
version = "0.28.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4271d37baee1b8c7e4b708028c57d816cf9d2434acb33a549475f78c181f6253"

[[package]]
name = "h2"
version = "0.3.24"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "bb2c4422095b67ee78da96fbb51a4cc413b3b25883c7717ff7ca1ab31022c9c9"
dependencies = [
 "bytes",
 "fnv",
 "futures-core",
 "futures-sink",
 "futures-util",
 "http",
 "indexmap",
 "slab",
 "tokio",
 "tokio-util",
 "tracing",
]

[[package]]
name = "hashbrown"
version = "0.14.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "290f1a1d9242c78d09ce40a5e87e7554ee637af1351968159f4952f028f75604"

[[package]]
name = "hermit-abi"
version = "0.3.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "bd5256b483761cd23699d0da46cc6fd2ee3be420bbe6d020ae4a091e70b7e9fd"

[[package]]
name = "hex"
version = "0.4.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7f24254aa9a54b5c858eaee2f5bccdb46aaf0e486a595ed5fd8f86ba55232a70"

[[package]]
name = "hkdf"
version = "0.8.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3fa08a006102488bd9cd5b8013aabe84955cf5ae22e304c2caf655b633aefae3"
dependencies = [
 "digest 0.8.1",
 "hmac",
]

[[package]]
name = "hmac"
version = "0.7.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5dcb5e64cda4c23119ab41ba960d1e170a774c8e4b9d9e6a9bc18aabf5e59695"
dependencies = [
 "crypto-mac",
 "digest 0.8.1",
]

[[package]]
name = "http"
version = "0.2.11"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8947b1a6fad4393052c7ba1f4cd97bed3e953a95c79c92ad9b051a04611d9fbb"
dependencies = [
 "bytes",
 "fnv",
 "itoa",
]

[[package]]
name = "http-body"
version = "0.4.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7ceab25649e9960c0311ea418d17bee82c0dcec1bd053b5f9a66e265a693bed2"
dependencies = [
 "bytes",
 "http",
 "pin-project-lite",
]

[[package]]
name = "httparse"
version = "1.8.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d897f394bad6a705d5f4104762e116a75639e470d80901eed05a860a95cb1904"

[[package]]
name = "httpdate"
version = "1.0.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "df3b46402a9d5adb4c86a0cf463f42e19994e3ee891101b1841f30a545cb49a9"

[[package]]
name = "hyper"
version = "0.14.28"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "bf96e135eb83a2a8ddf766e426a841d8ddd7449d5f00d34ea02b41d2f19eef80"
dependencies = [
 "bytes",
 "futures-channel",
 "futures-core",
 "futures-util",
 "h2",
 "http",
 "http-body",
 "httparse",
 "httpdate",
 "itoa",
 "pin-project-lite",
 "socket2",
 "tokio",
 "tower-service",
 "tracing",
 "want",
]

[[package]]
name = "hyper-tls"
version = "0.5.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d6183ddfa99b85da61a140bea0efc93fdf56ceaa041b37d553518030827f9905"
dependencies = [
 "bytes",
 "hyper",
 "native-tls",
 "tokio",
 "tokio-native-tls",
]

[[package]]
name = "iana-time-zone"
version = "0.1.60"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e7ffbb5a1b541ea2561f8c41c087286cc091e21e556a4f09a8f6cbf17b69b141"
dependencies = [
 "android_system_properties",
 "core-foundation-sys",
 "iana-time-zone-haiku",
 "js-sys",
 "wasm-bindgen",
 "windows-core",
]

[[package]]
name = "iana-time-zone-haiku"
version = "0.1.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f31827a206f56af32e590ba56d5d2d085f558508192593743f16b2306495269f"
dependencies = [
 "cc",
]

[[package]]
name = "idna"
version = "0.5.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "634d9b1461af396cad843f47fdba5597a4f9e6ddd4bfb6ff5d85028c25cb12f6"
dependencies = [
 "unicode-bidi",
 "unicode-normalization",
]

[[package]]
name = "indexmap"
version = "2.2.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "233cf39063f058ea2caae4091bf4a3ef70a653afbc026f5c4a4135d114e3c177"
dependencies = [
 "equivalent",
 "hashbrown",
]

[[package]]
name = "ipnet"
version = "2.9.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8f518f335dce6725a761382244631d86cf0ccb2863413590b31338feb467f9c3"

[[package]]
name = "itoa"
version = "1.0.10"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b1a46d1a171d865aa5f83f92695765caa047a9b4cbae2cbf37dbd613a793fd4c"

[[package]]
name = "js-sys"
version = "0.3.68"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "406cda4b368d531c842222cf9d2600a9a4acce8d29423695379c6868a143a9ee"
dependencies = [
 "wasm-bindgen",
]

[[package]]
name = "keccak"
version = "0.1.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ecc2af9a1119c51f12a14607e783cb977bde58bc069ff0c3da1095e635d70654"
dependencies = [
 "cpufeatures",
]

[[package]]
name = "lazy_static"
version = "1.4.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e2abad23fbc42b3700f2f279844dc832adb2b2eb069b2df918f455c4e18cc646"

[[package]]
name = "libc"
version = "0.2.153"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9c198f91728a82281a64e1f4f9eeb25d82cb32a5de251c6bd1b5154d63a8e7bd"

[[package]]
name = "linux-raw-sys"
version = "0.4.13"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "01cda141df6706de531b6c46c3a33ecca755538219bd484262fa09410c13539c"

[[package]]
name = "lock_api"
version = "0.4.11"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3c168f8615b12bc01f9c17e2eb0cc07dcae1940121185446edc3744920e8ef45"
dependencies = [
 "autocfg",
 "scopeguard",
]

[[package]]
name = "log"
version = "0.4.20"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b5e6163cb8c49088c2c36f57875e58ccd8c87c7427f7fbd50ea6710b2f3f2e8f"

[[package]]
name = "memchr"
version = "2.7.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "523dc4f511e55ab87b694dc30d0f820d60906ef06413f93d4d7a1385599cc149"

[[package]]
name = "mime"
version = "0.3.17"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "6877bb514081ee2a7ff5ef9de3281f14a4dd4bceac4c09388074a6b5df8a139a"

[[package]]
name = "miniz_oxide"
version = "0.7.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9d811f3e15f28568be3407c8e7fdb6514c1cda3cb30683f15b6a1a1dc4ea14a7"
dependencies = [
 "adler",
]

[[package]]
name = "mio"
version = "0.8.10"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8f3d0b296e374a4e6f3c7b0a1f5a51d748a0d34c85e7dc48fc3fa9a87657fe09"
dependencies = [
 "libc",
 "wasi 0.11.0+wasi-snapshot-preview1",
 "windows-sys 0.48.0",
]

[[package]]
name = "native-tls"
version = "0.2.11"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "07226173c32f2926027b63cce4bcd8076c3552846cbe7925f3aaffeac0a3b92e"
dependencies = [
 "lazy_static",
 "libc",
 "log",
 "openssl",
 "openssl-probe",
 "openssl-sys",
 "schannel",
 "security-framework",
 "security-framework-sys",
 "tempfile",
]

[[package]]
name = "num-bigint"
version = "0.2.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "090c7f9998ee0ff65aa5b723e4009f7b217707f1fb5ea551329cc4d6231fb304"
dependencies = [
 "autocfg",
 "num-integer",
 "num-traits",
]

[[package]]
name = "num-integer"
version = "0.1.46"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7969661fd2958a5cb096e56c8e1ad0444ac2bbcd0061bd28660485a44879858f"
dependencies = [
 "num-traits",
]

[[package]]
name = "num-traits"
version = "0.2.18"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "da0df0e5185db44f69b44f26786fe401b6c293d1907744beaa7fa62b2e5a517a"
dependencies = [
 "autocfg",
]

[[package]]
name = "num_cpus"
version = "1.16.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4161fcb6d602d4d2081af7c3a45852d875a03dd337a6bfdd6e06407b61342a43"
dependencies = [
 "hermit-abi",
 "libc",
]

[[package]]
name = "object"
version = "0.32.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a6a622008b6e321afc04970976f62ee297fdbaa6f95318ca343e3eebb9648441"
dependencies = [
 "memchr",
]

[[package]]
name = "once_cell"
version = "1.19.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3fdb12b2476b595f9358c5161aa467c2438859caa136dec86c26fdd2efe17b92"

[[package]]
name = "opaque-debug"
version = "0.2.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "2839e79665f131bdb5782e51f2c6c9599c133c6098982a54c794358bf432529c"

[[package]]
name = "opaque-debug"
version = "0.3.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "624a8340c38c1b80fd549087862da4ba43e08858af025b236e509b6649fc13d5"

[[package]]
name = "openssl"
version = "0.10.64"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "95a0481286a310808298130d22dd1fef0fa571e05a8f44ec801801e84b216b1f"
dependencies = [
 "bitflags 2.4.2",
 "cfg-if",
 "foreign-types",
 "libc",
 "once_cell",
 "openssl-macros",
 "openssl-sys",
]

[[package]]
name = "openssl-macros"
version = "0.1.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a948666b637a0f465e8564c73e89d4dde00d72d4d473cc972f390fc3dcee7d9c"
dependencies = [
 "proc-macro2",
 "quote",
 "syn 2.0.50",
]

[[package]]
name = "openssl-probe"
version = "0.1.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ff011a302c396a5197692431fc1948019154afc178baf7d8e37367442a4601cf"

[[package]]
name = "openssl-sys"
version = "0.9.100"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ae94056a791d0e1217d18b6cbdccb02c61e3054fc69893607f4067e3bb0b1fd1"
dependencies = [
 "cc",
 "libc",
 "pkg-config",
 "vcpkg",
]

[[package]]
name = "pairing-plus"
version = "0.19.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "58cda4f22e8e6720f3c254049960c8cc4f93cb82b5ade43bddd2622b5f39ea62"
dependencies = [
 "byteorder",
 "digest 0.8.1",
 "ff-zeroize",
 "rand 0.4.6",
 "rand_core 0.5.1",
 "rand_xorshift",
 "zeroize",
]

[[package]]
name = "parking_lot"
version = "0.12.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3742b2c103b9f06bc9fff0a37ff4912935851bee6d36f3c02bcc755bcfec228f"
dependencies = [
 "lock_api",
 "parking_lot_core",
]

[[package]]
name = "parking_lot_core"
version = "0.9.9"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4c42a9226546d68acdd9c0a280d17ce19bfe27a46bf68784e4066115788d008e"
dependencies = [
 "cfg-if",
 "libc",
 "redox_syscall",
 "smallvec",
 "windows-targets 0.48.5",
]

[[package]]
name = "percent-encoding"
version = "2.3.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e3148f5046208a5d56bcfc03053e3ca6334e51da8dfb19b6cdc8b306fae3283e"

[[package]]
name = "pin-project-lite"
version = "0.2.13"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8afb450f006bf6385ca15ef45d71d2288452bc3683ce2e2cacc0d18e4be60b58"

[[package]]
name = "pin-utils"
version = "0.1.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8b870d8c151b6f2fb93e84a13146138f05d02ed11c7e7c54f8826aaaf7c9f184"

[[package]]
name = "pkg-config"
version = "0.3.30"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d231b230927b5e4ad203db57bbcbee2802f6bce620b1e4a9024a07d94e2907ec"

[[package]]
name = "ppv-lite86"
version = "0.2.17"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5b40af805b3121feab8a3c29f04d8ad262fa8e0561883e7653e024ae4479e6de"

[[package]]
name = "proc-macro2"
version = "1.0.78"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e2422ad645d89c99f8f3e6b88a9fdeca7fabeac836b1002371c4367c8f984aae"
dependencies = [
 "unicode-ident",
]

[[package]]
name = "quote"
version = "1.0.35"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "291ec9ab5efd934aaf503a6466c5d5251535d108ee747472c3977cc5acc868ef"
dependencies = [
 "proc-macro2",
]

[[package]]
name = "rand"
version = "0.4.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "552840b97013b1a26992c11eac34bdd778e464601a4c2054b5f0bff7c6761293"
dependencies = [
 "fuchsia-cprng",
 "libc",
 "rand_core 0.3.1",
 "rdrand",
 "winapi",
]

[[package]]
name = "rand"
version = "0.7.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "6a6b1679d49b24bbfe0c803429aa1874472f50d9b363131f0e89fc356b544d03"
dependencies = [
 "getrandom 0.1.16",
 "libc",
 "rand_chacha",
 "rand_core 0.5.1",
 "rand_hc",
]

[[package]]
name = "rand_chacha"
version = "0.2.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f4c8ed856279c9737206bf725bf36935d8666ead7aa69b52be55af369d193402"
dependencies = [
 "ppv-lite86",
 "rand_core 0.5.1",
]

[[package]]
name = "rand_core"
version = "0.3.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7a6fdeb83b075e8266dcc8762c22776f6877a63111121f5f8c7411e5be7eed4b"
dependencies = [
 "rand_core 0.4.2",
]

[[package]]
name = "rand_core"
version = "0.4.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9c33a3c44ca05fa6f1807d8e6743f3824e8509beca625669633be0acbdf509dc"

[[package]]
name = "rand_core"
version = "0.5.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "90bde5296fc891b0cef12a6d03ddccc162ce7b2aff54160af9338f8d40df6d19"
dependencies = [
 "getrandom 0.1.16",
]

[[package]]
name = "rand_hc"
version = "0.2.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ca3129af7b92a17112d59ad498c6f81eaf463253766b90396d39ea7a39d6613c"
dependencies = [
 "rand_core 0.5.1",
]

[[package]]
name = "rand_xorshift"
version = "0.2.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "77d416b86801d23dde1aa643023b775c3a462efc0ed96443add11546cdf1dca8"
dependencies = [
 "rand_core 0.5.1",
]

[[package]]
name = "rayon"
version = "1.8.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "fa7237101a77a10773db45d62004a272517633fbcc3df19d96455ede1122e051"
dependencies = [
 "either",
 "rayon-core",
]

[[package]]
name = "rayon-core"
version = "1.12.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "1465873a3dfdaa8ae7cb14b4383657caab0b3e8a0aa9ae8e04b044854c8dfce2"
dependencies = [
 "crossbeam-deque",
 "crossbeam-utils",
]

[[package]]
name = "rdrand"
version = "0.4.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "678054eb77286b51581ba43620cc911abf02758c91f93f479767aed0f90458b2"
dependencies = [
 "rand_core 0.3.1",
]

[[package]]
name = "redox_syscall"
version = "0.4.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4722d768eff46b75989dd134e5c353f0d6296e5aaa3132e776cbdb56be7731aa"
dependencies = [
 "bitflags 1.3.2",
]

[[package]]
name = "reqwest"
version = "0.11.24"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c6920094eb85afde5e4a138be3f2de8bbdf28000f0029e72c45025a56b042251"
dependencies = [
 "base64 0.21.7",
 "bytes",
 "encoding_rs",
 "futures-core",
 "futures-util",
 "h2",
 "http",
 "http-body",
 "hyper",
 "hyper-tls",
 "ipnet",
 "js-sys",
 "log",
 "mime",
 "native-tls",
 "once_cell",
 "percent-encoding",
 "pin-project-lite",
 "rustls-pemfile",
 "serde",
 "serde_json",
 "serde_urlencoded",
 "sync_wrapper",
 "system-configuration",
 "tokio",
 "tokio-native-tls",
 "tokio-socks",
 "tower-service",
 "url",
 "wasm-bindgen",
 "wasm-bindgen-futures",
 "web-sys",
 "winreg",
]

[[package]]
name = "ring"
version = "0.17.8"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c17fa4cb658e3583423e915b9f3acc01cceaee1860e33d59ebae66adc3a2dc0d"
dependencies = [
 "cc",
 "cfg-if",
 "getrandom 0.2.12",
 "libc",
 "spin",
 "untrusted",
 "windows-sys 0.52.0",
]

[[package]]
name = "rustc-demangle"
version = "0.1.23"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d626bb9dae77e28219937af045c257c28bfd3f69333c512553507f5f9798cb76"

[[package]]
name = "rustix"
version = "0.38.31"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "6ea3e1a662af26cd7a3ba09c0297a31af215563ecf42817c98df621387f4e949"
dependencies = [
 "bitflags 2.4.2",
 "errno",
 "libc",
 "linux-raw-sys",
 "windows-sys 0.52.0",
]

[[package]]
name = "rustls"
version = "0.21.10"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f9d5a6813c0759e4609cd494e8e725babae6a2ca7b62a5536a13daaec6fcb7ba"
dependencies = [
 "log",
 "ring",
 "rustls-webpki",
 "sct",
]

[[package]]
name = "rustls-pemfile"
version = "1.0.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "1c74cae0a4cf6ccbbf5f359f08efdf8ee7e1dc532573bf0db71968cb56b1448c"
dependencies = [
 "base64 0.21.7",
]

[[package]]
name = "rustls-webpki"
version = "0.101.7"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8b6275d1ee7a1cd780b64aca7726599a1dbc893b1e64144529e55c3c2f745765"
dependencies = [
 "ring",
 "untrusted",
]

[[package]]
name = "ryu"
version = "1.0.17"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e86697c916019a8588c99b5fac3cead74ec0b4b819707a682fd4d23fa0ce1ba1"

[[package]]
name = "schannel"
version = "0.1.23"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "fbc91545643bcf3a0bbb6569265615222618bdf33ce4ffbbd13c4bbd4c093534"
dependencies = [
 "windows-sys 0.52.0",
]

[[package]]
name = "scopeguard"
version = "1.2.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "94143f37725109f92c262ed2cf5e59bce7498c01bcc1502d7b9afe439a4e9f49"

[[package]]
name = "sct"
version = "0.7.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "da046153aa2352493d6cb7da4b6e5c0c057d8a1d0a9aa8560baffdd945acd414"
dependencies = [
 "ring",
 "untrusted",
]

[[package]]
name = "security-framework"
version = "2.9.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "05b64fb303737d99b81884b2c63433e9ae28abebe5eb5045dcdd175dc2ecf4de"
dependencies = [
 "bitflags 1.3.2",
 "core-foundation",
 "core-foundation-sys",
 "libc",
 "security-framework-sys",
]

[[package]]
name = "security-framework-sys"
version = "2.9.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e932934257d3b408ed8f30db49d85ea163bfe74961f017f405b025af298f0c7a"
dependencies = [
 "core-foundation-sys",
 "libc",
]

[[package]]
name = "sensor-lib"
version = "0.2.2"
dependencies = [
 "chrono",
 "hyper",
 "log",
 "reqwest",
 "serde",
 "serde_json",
 "tokio",
 "ureq",
 "url",
 "verifiable-credential-parser-rust",
 "zwuevi",
]

[[package]]
name = "serde"
version = "1.0.197"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3fb1c873e1b9b056a4dc4c0c198b24c3ffa059243875552b2bd0933b1aee4ce2"
dependencies = [
 "serde_derive",
]

[[package]]
name = "serde_derive"
version = "1.0.197"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7eb0b34b42edc17f6b7cac84a52a1c5f0e1bb2227e997ca9011ea3dd34e8610b"
dependencies = [
 "proc-macro2",
 "quote",
 "syn 2.0.50",
]

[[package]]
name = "serde_json"
version = "1.0.114"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c5f09b1bd632ef549eaa9f60a1f8de742bdbc698e6cee2095fc84dde5f549ae0"
dependencies = [
 "itoa",
 "ryu",
 "serde",
]

[[package]]
name = "serde_urlencoded"
version = "0.7.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d3491c14715ca2294c4d6a88f15e84739788c1d030eed8c110436aafdaa2f3fd"
dependencies = [
 "form_urlencoded",
 "itoa",
 "ryu",
 "serde",
]

[[package]]
name = "sha2"
version = "0.9.9"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4d58a1e1bf39749807d89cf2d98ac2dfa0ff1cb3faa38fbb64dd88ac8013d800"
dependencies = [
 "block-buffer 0.9.0",
 "cfg-if",
 "cpufeatures",
 "digest 0.9.0",
 "opaque-debug 0.3.0",
]

[[package]]
name = "sha3"
version = "0.10.8"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "75872d278a8f37ef87fa0ddbda7802605cb18344497949862c0d4dcb291eba60"
dependencies = [
 "digest 0.10.7",
 "keccak",
]

[[package]]
name = "signal-hook-registry"
version = "1.4.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d8229b473baa5980ac72ef434c4415e70c4b5e71b423043adb4ba059f89c99a1"
dependencies = [
 "libc",
]

[[package]]
name = "signature"
version = "1.6.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "74233d3b3b2f6d4b006dc19dee745e73e2a6bfb6f93607cd3b02bd5b00797d7c"

[[package]]
name = "slab"
version = "0.4.9"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8f92a496fb766b417c996b9c5e57daf2f7ad3b0bebe1ccfca4856390e3d3bb67"
dependencies = [
 "autocfg",
]

[[package]]
name = "smallvec"
version = "1.13.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e6ecd384b10a64542d77071bd64bd7b231f4ed5940fba55e98c3de13824cf3d7"

[[package]]
name = "socket2"
version = "0.5.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7b5fac59a5cb5dd637972e5fca70daf0523c9067fcdc4842f053dae04a18f8e9"
dependencies = [
 "libc",
 "windows-sys 0.48.0",
]

[[package]]
name = "socks"
version = "0.3.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f0c3dbbd9ae980613c6dd8e28a9407b50509d3803b57624d5dfe8315218cd58b"
dependencies = [
 "byteorder",
 "libc",
 "winapi",
]

[[package]]
name = "spin"
version = "0.9.8"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "6980e8d7511241f8acf4aebddbb1ff938df5eebe98691418c4468d0b72a96a67"

[[package]]
name = "subtle"
version = "1.0.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "2d67a5a62ba6e01cb2192ff309324cb4875d0c451d55fe2319433abe7a05a8ee"

[[package]]
name = "subtle"
version = "2.5.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "81cdd64d312baedb58e21336b31bc043b77e01cc99033ce76ef539f78e965ebc"

[[package]]
name = "syn"
version = "1.0.109"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "72b64191b275b66ffe2469e8af2c1cfe3bafa67b529ead792a6d0160888b4237"
dependencies = [
 "proc-macro2",
 "quote",
 "unicode-ident",
]

[[package]]
name = "syn"
version = "2.0.50"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "74f1bdc9872430ce9b75da68329d1c1746faf50ffac5f19e02b71e37ff881ffb"
dependencies = [
 "proc-macro2",
 "quote",
 "unicode-ident",
]

[[package]]
name = "sync_wrapper"
version = "0.1.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "2047c6ded9c721764247e62cd3b03c09ffc529b2ba5b10ec482ae507a4a70160"

[[package]]
name = "synstructure"
version = "0.12.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f36bdaa60a83aca3921b5259d5400cbf5e90fc51931376a9bd4a0eb79aa7210f"
dependencies = [
 "proc-macro2",
 "quote",
 "syn 1.0.109",
 "unicode-xid",
]

[[package]]
name = "system-configuration"
version = "0.5.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ba3a3adc5c275d719af8cb4272ea1c4a6d668a777f37e115f6d11ddbc1c8e0e7"
dependencies = [
 "bitflags 1.3.2",
 "core-foundation",
 "system-configuration-sys",
]

[[package]]
name = "system-configuration-sys"
version = "0.5.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a75fb188eb626b924683e3b95e3a48e63551fcfb51949de2f06a9d91dbee93c9"
dependencies = [
 "core-foundation-sys",
 "libc",
]

[[package]]
name = "tempfile"
version = "3.10.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a365e8cd18e44762ef95d87f284f4b5cd04107fec2ff3052bd6a3e6069669e67"
dependencies = [
 "cfg-if",
 "fastrand",
 "rustix",
 "windows-sys 0.52.0",
]

[[package]]
name = "thiserror"
version = "1.0.57"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "1e45bcbe8ed29775f228095caf2cd67af7a4ccf756ebff23a306bf3e8b47b24b"
dependencies = [
 "thiserror-impl",
]

[[package]]
name = "thiserror-impl"
version = "1.0.57"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a953cb265bef375dae3de6663da4d3804eee9682ea80d8e2542529b73c531c81"
dependencies = [
 "proc-macro2",
 "quote",
 "syn 2.0.50",
]

[[package]]
name = "tinyvec"
version = "1.6.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "87cc5ceb3875bb20c2890005a4e226a4651264a5c75edb2421b52861a0a0cb50"
dependencies = [
 "tinyvec_macros",
]

[[package]]
name = "tinyvec_macros"
version = "0.1.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "1f3ccbac311fea05f86f61904b462b55fb3df8837a366dfc601a0161d0532f20"

[[package]]
name = "tokio"
version = "1.36.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "61285f6515fa018fb2d1e46eb21223fff441ee8db5d0f1435e8ab4f5cdb80931"
dependencies = [
 "backtrace",
 "bytes",
 "libc",
 "mio",
 "num_cpus",
 "parking_lot",
 "pin-project-lite",
 "signal-hook-registry",
 "socket2",
 "tokio-macros",
 "windows-sys 0.48.0",
]

[[package]]
name = "tokio-macros"
version = "2.2.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5b8a1e28f2deaa14e508979454cb3a223b10b938b45af148bc0986de36f1923b"
dependencies = [
 "proc-macro2",
 "quote",
 "syn 2.0.50",
]

[[package]]
name = "tokio-native-tls"
version = "0.3.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "bbae76ab933c85776efabc971569dd6119c580d8f5d448769dec1764bf796ef2"
dependencies = [
 "native-tls",
 "tokio",
]

[[package]]
name = "tokio-socks"
version = "0.5.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "51165dfa029d2a65969413a6cc96f354b86b464498702f174a4efa13608fd8c0"
dependencies = [
 "either",
 "futures-util",
 "thiserror",
 "tokio",
]

[[package]]
name = "tokio-util"
version = "0.7.10"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5419f34732d9eb6ee4c3578b7989078579b7f039cbbb9ca2c4da015749371e15"
dependencies = [
 "bytes",
 "futures-core",
 "futures-sink",
 "pin-project-lite",
 "tokio",
 "tracing",
]

[[package]]
name = "tower-service"
version = "0.3.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b6bc1c9ce2b5135ac7f93c72918fc37feb872bdc6a5533a8b85eb4b86bfdae52"

[[package]]
name = "tracing"
version = "0.1.40"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c3523ab5a71916ccf420eebdf5521fcef02141234bbc0b8a49f2fdc4544364ef"
dependencies = [
 "pin-project-lite",
 "tracing-core",
]

[[package]]
name = "tracing-core"
version = "0.1.32"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c06d3da6113f116aaee68e4d601191614c9053067f9ab7f6edbcb161237daa54"
dependencies = [
 "once_cell",
]

[[package]]
name = "try-lock"
version = "0.2.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e421abadd41a4225275504ea4d6566923418b7f05506fbc9c0fe86ba7396114b"

[[package]]
name = "typenum"
version = "1.17.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "42ff0bf0c66b8238c6f3b578df37d0b7848e55df8577b3f74f92a69acceeb825"

[[package]]
name = "unicode-bidi"
version = "0.3.15"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "08f95100a766bf4f8f28f90d77e0a5461bbdb219042e7679bebe79004fed8d75"

[[package]]
name = "unicode-ident"
version = "1.0.12"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3354b9ac3fae1ff6755cb6db53683adb661634f67557942dea4facebec0fee4b"

[[package]]
name = "unicode-normalization"
version = "0.1.23"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a56d1686db2308d901306f92a263857ef59ea39678a5458e7cb17f01415101f5"
dependencies = [
 "tinyvec",
]

[[package]]
name = "unicode-xid"
version = "0.2.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f962df74c8c05a667b5ee8bcf162993134c104e96440b663c8daa176dc772d8c"

[[package]]
name = "untrusted"
version = "0.9.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8ecb6da28b8a351d773b68d5825ac39017e680750f980f3a1a85cd8dd28a47c1"

[[package]]
name = "ureq"
version = "2.9.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f8cdd25c339e200129fe4de81451814e5228c9b771d57378817d6117cc2b3f97"
dependencies = [
 "base64 0.21.7",
 "flate2",
 "log",
 "once_cell",
 "rustls",
 "rustls-webpki",
 "serde",
 "serde_json",
 "socks",
 "url",
 "webpki-roots",
]

[[package]]
name = "url"
version = "2.5.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "31e6302e3bb753d46e83516cae55ae196fc0c309407cf11ab35cc51a4c2a4633"
dependencies = [
 "form_urlencoded",
 "idna",
 "percent-encoding",
]

[[package]]
name = "vcpkg"
version = "0.2.15"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "accd4ea62f7bb7a82fe23066fb0957d48ef677f6eeb8215f372f52e48bb32426"

[[package]]
name = "verifiable-credential-parser-rust"
version = "0.3.0"
source = "git+ssh://git@git.ins.jku.at/proj/digidow/verifiable-credential-parser-rust.git#bff413f0b3cd15606229142b2c52061673ad3a0e"
dependencies = [
 "base64 0.13.1",
 "bbs",
 "log",
 "serde",
 "serde_json",
 "url",
]

[[package]]
name = "version_check"
version = "0.9.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "49874b5167b65d7193b8aba1567f5c7d93d001cafc34600cee003eda787e483f"

[[package]]
name = "want"
version = "0.3.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "bfa7760aed19e106de2c7c0b581b509f2f25d3dacaf737cb82ac61bc6d760b0e"
dependencies = [
 "try-lock",
]

[[package]]
name = "wasi"
version = "0.9.0+wasi-snapshot-preview1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "cccddf32554fecc6acb585f82a32a72e28b48f8c4c1883ddfeeeaa96f7d8e519"

[[package]]
name = "wasi"
version = "0.11.0+wasi-snapshot-preview1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9c8d87e72b64a3b4db28d11ce29237c246188f4f51057d65a7eab63b7987e423"

[[package]]
name = "wasm-bindgen"
version = "0.2.91"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c1e124130aee3fb58c5bdd6b639a0509486b0338acaaae0c84a5124b0f588b7f"
dependencies = [
 "cfg-if",
 "wasm-bindgen-macro",
]

[[package]]
name = "wasm-bindgen-backend"
version = "0.2.91"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c9e7e1900c352b609c8488ad12639a311045f40a35491fb69ba8c12f758af70b"
dependencies = [
 "bumpalo",
 "log",
 "once_cell",
 "proc-macro2",
 "quote",
 "syn 2.0.50",
 "wasm-bindgen-shared",
]

[[package]]
name = "wasm-bindgen-futures"
version = "0.4.41"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "877b9c3f61ceea0e56331985743b13f3d25c406a7098d45180fb5f09bc19ed97"
dependencies = [
 "cfg-if",
 "js-sys",
 "wasm-bindgen",
 "web-sys",
]

[[package]]
name = "wasm-bindgen-macro"
version = "0.2.91"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b30af9e2d358182b5c7449424f017eba305ed32a7010509ede96cdc4696c46ed"
dependencies = [
 "quote",
 "wasm-bindgen-macro-support",
]

[[package]]
name = "wasm-bindgen-macro-support"
version = "0.2.91"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "642f325be6301eb8107a83d12a8ac6c1e1c54345a7ef1a9261962dfefda09e66"
dependencies = [
 "proc-macro2",
 "quote",
 "syn 2.0.50",
 "wasm-bindgen-backend",
 "wasm-bindgen-shared",
]

[[package]]
name = "wasm-bindgen-shared"
version = "0.2.91"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4f186bd2dcf04330886ce82d6f33dd75a7bfcf69ecf5763b89fcde53b6ac9838"

[[package]]
name = "web-sys"
version = "0.3.68"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "96565907687f7aceb35bc5fc03770a8a0471d82e479f25832f54a0e3f4b28446"
dependencies = [
 "js-sys",
 "wasm-bindgen",
]

[[package]]
name = "webpki-roots"
version = "0.25.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5f20c57d8d7db6d3b86154206ae5d8fba62dd39573114de97c2cb0578251f8e1"

[[package]]
name = "winapi"
version = "0.3.9"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5c839a674fcd7a98952e593242ea400abe93992746761e38641405d28b00f419"
dependencies = [
 "winapi-i686-pc-windows-gnu",
 "winapi-x86_64-pc-windows-gnu",
]

[[package]]
name = "winapi-i686-pc-windows-gnu"
version = "0.4.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ac3b87c63620426dd9b991e5ce0329eff545bccbbb34f3be09ff6fb6ab51b7b6"

[[package]]
name = "winapi-x86_64-pc-windows-gnu"
version = "0.4.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "712e227841d057c1ee1cd2fb22fa7e5a5461ae8e48fa2ca79ec42cfc1931183f"

[[package]]
name = "windows-core"
version = "0.52.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "33ab640c8d7e35bf8ba19b884ba838ceb4fba93a4e8c65a9059d08afcfc683d9"
dependencies = [
 "windows-targets 0.52.0",
]

[[package]]
name = "windows-sys"
version = "0.48.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "677d2418bec65e3338edb076e806bc1ec15693c5d0104683f2efe857f61056a9"
dependencies = [
 "windows-targets 0.48.5",
]

[[package]]
name = "windows-sys"
version = "0.52.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "282be5f36a8ce781fad8c8ae18fa3f9beff57ec1b52cb3de0789201425d9a33d"
dependencies = [
 "windows-targets 0.52.0",
]

[[package]]
name = "windows-targets"
version = "0.48.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9a2fa6e2155d7247be68c096456083145c183cbbbc2764150dda45a87197940c"
dependencies = [
 "windows_aarch64_gnullvm 0.48.5",
 "windows_aarch64_msvc 0.48.5",
 "windows_i686_gnu 0.48.5",
 "windows_i686_msvc 0.48.5",
 "windows_x86_64_gnu 0.48.5",
 "windows_x86_64_gnullvm 0.48.5",
 "windows_x86_64_msvc 0.48.5",
]

[[package]]
name = "windows-targets"
version = "0.52.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8a18201040b24831fbb9e4eb208f8892e1f50a37feb53cc7ff887feb8f50e7cd"
dependencies = [
 "windows_aarch64_gnullvm 0.52.0",
 "windows_aarch64_msvc 0.52.0",
 "windows_i686_gnu 0.52.0",
 "windows_i686_msvc 0.52.0",
 "windows_x86_64_gnu 0.52.0",
 "windows_x86_64_gnullvm 0.52.0",
 "windows_x86_64_msvc 0.52.0",
]

[[package]]
name = "windows_aarch64_gnullvm"
version = "0.48.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "2b38e32f0abccf9987a4e3079dfb67dcd799fb61361e53e2882c3cbaf0d905d8"

[[package]]
name = "windows_aarch64_gnullvm"
version = "0.52.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "cb7764e35d4db8a7921e09562a0304bf2f93e0a51bfccee0bd0bb0b666b015ea"

[[package]]
name = "windows_aarch64_msvc"
version = "0.48.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "dc35310971f3b2dbbf3f0690a219f40e2d9afcf64f9ab7cc1be722937c26b4bc"

[[package]]
name = "windows_aarch64_msvc"
version = "0.52.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "bbaa0368d4f1d2aaefc55b6fcfee13f41544ddf36801e793edbbfd7d7df075ef"

[[package]]
name = "windows_i686_gnu"
version = "0.48.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a75915e7def60c94dcef72200b9a8e58e5091744960da64ec734a6c6e9b3743e"

[[package]]
name = "windows_i686_gnu"
version = "0.52.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a28637cb1fa3560a16915793afb20081aba2c92ee8af57b4d5f28e4b3e7df313"

[[package]]
name = "windows_i686_msvc"
version = "0.48.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8f55c233f70c4b27f66c523580f78f1004e8b5a8b659e05a4eb49d4166cca406"

[[package]]
name = "windows_i686_msvc"
version = "0.52.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ffe5e8e31046ce6230cc7215707b816e339ff4d4d67c65dffa206fd0f7aa7b9a"

[[package]]
name = "windows_x86_64_gnu"
version = "0.48.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "53d40abd2583d23e4718fddf1ebec84dbff8381c07cae67ff7768bbf19c6718e"

[[package]]
name = "windows_x86_64_gnu"
version = "0.52.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3d6fa32db2bc4a2f5abeacf2b69f7992cd09dca97498da74a151a3132c26befd"

[[package]]
name = "windows_x86_64_gnullvm"
version = "0.48.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "0b7b52767868a23d5bab768e390dc5f5c55825b6d30b86c844ff2dc7414044cc"

[[package]]
name = "windows_x86_64_gnullvm"
version = "0.52.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "1a657e1e9d3f514745a572a6846d3c7aa7dbe1658c056ed9c3344c4109a6949e"

[[package]]
name = "windows_x86_64_msvc"
version = "0.48.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ed94fce61571a4006852b7389a063ab983c02eb1bb37b47f8272ce92d06d9538"

[[package]]
name = "windows_x86_64_msvc"
version = "0.52.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "dff9641d1cd4be8d1a070daf9e3773c5f67e78b4d9d42263020c057706765c04"

[[package]]
name = "winreg"
version = "0.50.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "524e57b2c537c0f9b1e69f1965311ec12182b4122e45035b1508cd24d2adadb1"
dependencies = [
 "cfg-if",
 "windows-sys 0.48.0",
]

[[package]]
name = "zeroize"
version = "1.3.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4756f7db3f7b5574938c3eb1c117038b8e07f95ee6718c0efad4ac21508f1efd"
dependencies = [
 "zeroize_derive",
]

[[package]]
name = "zeroize_derive"
version = "1.4.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ce36e65b0d2999d2aafac989fb249189a141aee1f53c612c1f37d72631959f69"
dependencies = [
 "proc-macro2",
 "quote",
 "syn 2.0.50",
]

[[package]]
name = "zwuevi"
version = "0.1.0"
source = "git+ssh://git@git.ins.jku.at/proj/digidow/rust-tor-controller.git#cb411c4f485c5daf56c2fdedc7014de75786fa44"
dependencies = [
 "base32",
 "base64 0.13.1",
 "ed25519-dalek",
 "rand 0.7.3",
 "serde",
 "serde_json",
 "sha3",
 "tokio",
]

sensor-lib/Cargo.toml

[package]
name = "sensor-lib"
version = "0.2.2"
edition = "2021"

See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html

[features]
default = ["tor"]
tor = ["dep:verifiable-credential"]

[dependencies]
chrono = "0.4"
hyper = { version = "0.14", features = ["full"] }
url = { version = "2.4" }
zwuevi = { git = "ssh://git@git.ins.jku.at/proj/digidow/rust-tor-controller.git"}
verifiable-credential = { git = "ssh://git@git.ins.jku.at/proj/digidow/verifiable-credential-parser-rust.git", package="verifiable-credential-parser-rust", optional=true }
tokio = { version = "1.24", features = ["time", "full"] }
ureq = { version = "2.5", features = ["json", "socks-proxy"] }
serde = { version = "1.0", features = ["derive"] }
serde_json = "1.0"
log = "0.4"

[dev-dependencies]
reqwest = {version = "0.11", features = ["socks"] }

sensor-lib/.cargo/config.toml

[net]
git-fetch-with-cli = true

sensor-lib/flake.lock

{
 "nodes": {
 "flock-of-flakes": {
 "inputs": {
 "nixpkgs": "nixpkgs",
 "utils": "utils"
 },
 "locked": {
 "lastModified": 1693392643,
 "narHash": "sha256-k2lY4YNsK6xfgRRLshQSijy0rso9wSTAXFMhkrSbqCE=",
 "ref": "refs/heads/master",
 "rev": "b53ff46136b1a413e6c2975b5eba8816dfbd0d02",
 "revCount": 13,
 "type": "git",
 "url": "https://git.ins.jku.at/proj/digidow/flock-of-flakes.git"
 },
 "original": {
 "type": "git",
 "url": "https://git.ins.jku.at/proj/digidow/flock-of-flakes.git"
 }
 },
 "naersk": {
 "inputs": {
 "nixpkgs": [
 "nixpkgs"
]
 },
 "locked": {
 "lastModified": 1698420672,
 "narHash": "sha256-/TdeHMPRjjdJub7p7+w55vyABrsJlt5QkznPYy55vKA=",
 "owner": "nix-community",
 "repo": "naersk",
 "rev": "aeb58d5e8faead8980a807c840232697982d47b9",
 "type": "github"
 },
 "original": {
 "owner": "nix-community",
 "repo": "naersk",
 "type": "github"
 }
 },
 "nixpkgs": {
 "locked": {
 "lastModified": 1693145325,
 "narHash": "sha256-Gat9xskErH1zOcLjYMhSDBo0JTBZKfGS0xJlIRnj6Rc=",
 "owner": "nixos",
 "repo": "nixpkgs",
 "rev": "cddebdb60de376c1bdb7a4e6ee3d98355453fe56",
 "type": "github"
 },
 "original": {
 "owner": "nixos",
 "ref": "nixpkgs-unstable",
 "repo": "nixpkgs",
 "type": "github"
 }
 },
 "root": {
 "inputs": {
 "flock-of-flakes": "flock-of-flakes",
 "naersk": "naersk",
 "nixpkgs": [
 "flock-of-flakes",
 "nixpkgs"
],
 "utils": [
 "flock-of-flakes",
 "utils"
]
 }
 },
 "systems": {
 "locked": {
 "lastModified": 1681028828,
 "narHash": "sha256-Vy1rq5AaRuLzOxct8nz4T6wlgyUR7zLU309k9mBC768=",
 "owner": "nix-systems",
 "repo": "default",
 "rev": "da67096a3b9bf56a91d16901293e51ba5b49a27e",
 "type": "github"
 },
 "original": {
 "owner": "nix-systems",
 "repo": "default",
 "type": "github"
 }
 },
 "utils": {
 "inputs": {
 "systems": "systems"
 },
 "locked": {
 "lastModified": 1692799911,
 "narHash": "sha256-3eihraek4qL744EvQXsK1Ha6C3CR7nnT8X2qWap4RNk=",
 "owner": "numtide",
 "repo": "flake-utils",
 "rev": "f9e7cf818399d17d347f847525c5a5a8032e4e44",
 "type": "github"
 },
 "original": {
 "owner": "numtide",
 "repo": "flake-utils",
 "type": "github"
 }
 }
 },
 "root": "root",
 "version": 7
}

Code used for this thesis

https://ctan.org/pkg/attachfile2

	Abstract
	Kurzfassung
	Contents
	List of Tables
	List of Figures
	Introduction
	Motivation
	Objectives
	Approach
	Contributions
	Publications
	Outline

	Background
	Decentral biometric authentication
	Definitions
	Centralized biometric authentication
	Biometric authentication overview
	Sensor
	Matcher
	Aggregator
	Performance evaluation metrics and datasets
	Security and privacy considerations

	Datasets
	Celebrities in Frontal-Profile (CFP)
	Real-world mask dataset
	WIDER Face
	Labeled Faces in the Wild (LFW)
	Cross-Pose Labeled Faces in the Wild (CPLFW)
	CelebFaces Attributes (CelebA)

	Understanding facial features in biometric authentication
	State-of-the-art face pipeline
	Face detection
	Face recognition
	Summary

	Heuristics for successful face pipeline
	Experimental setup
	Detailed analysis

	Dataset adaptation for key facial feature analysis
	Related work
	Experimental results

	Experimental results
	Computer modified images from the CFP dataset
	Grid
	Mask
	Real world mask images

	MTCNN face-in-face malfunction

	Shrinking giants: The power of tiny embeddings
	Related work
	Element reduction
	Data quantization
	Proposed pipeline
	Practical implications of compact embeddings

	One template to rule them all: Fusing embeddings
	Multi-image face recognition
	Embedding aggregation
	Dataset adaptation
	Single setting performance
	Related work

	The speed of sight: Optimizing face detection for embedded systems
	Intricacies of SOTA face pipelines
	Face detection
	Face recognition

	State-of-the-art face recognition pipeline
	Performance baseline
	Baseline improvements

	Inference-time/accuracy tradeoff
	Fast and accurate face recognition pipeline

	Biometric Domain Specific Sensor Language (BioDSSL)
	Complexity and rigidity of current systems
	Proposed solution: BioDSSL
	Scope and goals
	Traditional approach
	Evolution of biometric identification systems
	Diverse sensors and modalities in biometrics
	Challenges in current systems
	Previous attempts at solutions and their limitations

	BioDSSL: A Domain Specific Sensor Language
	Concept and Design Principles of BioDSSL
	Unique Features and Advantages

	Implementation
	Case studies and experimental results
	Experimental setup
	Case studies demonstrating the efficacy of BioDSSL

	Attacks

	When Theory Hits Reality: Living lab prototype and Digidow integration
	Digidow
	Components
	Interaction

	Living lab prototype
	Hardware
	Programming language
	Hallway scenario
	Single door scenario

	Sensor
	face-lib
	sensor-lib
	Sensor orchestration

	Results

	Conclusion and outlook
	Conclusion
	Future work

	Bibliography
	Code

