
JOHANNESKEPLER
UNIVERSITY LINZ
Altenberger Straße 69
4040 Linz, Austria
jku.at

Author
Stefan Kempinger, BSc
11908714

Submission
Institute of
Networks and Security

Thesis Supervisor
Prof. Dr. RenéMayrhofer

Assistant Thesis
Supervisor
Dr.Michael Roland

July 2024

Assessing the
Feasibility of Developing
a Secure Digital Identity
Wallet for Android

Master’s Thesis
to confer the academic degree of

Diplom-Ingenieur
in the Master’s Program

Computer Science

https://jku.at/

Abstract

This master thesis explores the feasibility and security aspects of implement-
ing a digital identity wallet on Android smartphones. With the increasing
prominence of digital wallets in various domains, the security of these wallets,
which store and manage sensitive data, is of paramount importance. The re-
search project Digidow aims to develop decentralized digital identity systems
for the physical world, with the digital wallet being a crucial component of this
system. This thesis assesses the current state of protection capabilities on An-
droid smartphones and aims to define a pathway for implementing a secure
digital identity wallet. The research involves redefining the requirements for
and threats to a digital identity wallet, analyzing best practice advice and the-
oretical capabilities, dissecting actual wallets to understand their implemen-
tation, and refining the list of theoretical capabilities based on the evaluation.
Thefindingsof this research couldpotentially contribute to thedevelopmentof
more secure digital identity wallets and enhance the overall security of digital
identification systems.

ii

Kurzfassung

DieseMasterarbeit untersuchtdieMachbarkeit undSicherheitsaspekteder Im-
plementierung einer digitalen Identitätswallet auf Android-Smartphones. Mit
der zunehmendenBedeutungvondigitalenWallets in verschiedenenBereichen
ist die Sicherheit dieser Wallets, die sensible Daten speichern und verwalten,
vongrößterBedeutung.DasForschungsprojektDigidowzielt darauf ab, dezen-
trale digitale Identifikationssysteme für die physischeWelt zu entwickeln,wo-
bei die digitaleWallet eine entscheidendeKomponente dieses Systems ist. Die-
se Arbeit evaluiert den aktuellen Stand der Sicherheitsfunktionen auf Android-
Smartphones und zielt darauf ab, einen Weg zur Implementierung einer si-
cheren digitalen Identitätswallet zu definieren. Die Forschung beinhaltet die
Neudefinition der Anforderungen an und Bedrohungen für eine digitale Iden-
titätswallet, dieAnalyse vonBest-Practice-Ratschlägenund theoretischenFä-
higkeiten, die Dekompilierung und Auswertung tatsächlicher Wallets, um de-
ren Implementierung zu verstehen, und die Verfeinerung der Liste der theo-
retischen Fähigkeiten auf der Grundlage der Bewertung. Die Ergebnisse dieser
Forschung könnten potenziell zur Entwicklung sichererer digitaler Identitäts-
wallets beitragen und die allgemeine Sicherheit digitaler Identifikationssyste-
me verbessern.

iii

Acknowledgements

This work has been carried out within the scope of Digidow, the Christian
DopplerLaboratory forPrivateDigitalAuthentication in thePhysicalWorldand
has partially been supported byONCE (FFGgrant FO999887054 in the program
“IKT der Zukunft”) and the LIT Secure and Correct Systems Lab. We grate-
fully acknowledge financial support by the Austrian FederalMinistry of Labour
and Economy (BMAW), the Austrian Federal Ministry for Climate Action, En-
vironment, Energy, Mobility, Innovation and Technology (BMK), the National
Foundation for Research, Technology and Development, the Christian Doppler
Research Association, 3 Banken IT GmbH, ekey biometric systems GmbH, Ke-
pler UniversitätsklinikumGmbH,NXPSemiconductors Austria GmbH&CoKG,
Österreichische Staatsdruckerei GmbH, and the State of Upper Austria.

iv

Contents

Abstract ii

Kurzfassung iii

Acknowledgements iv

List of Acronyms viii

1 Introduction 1
1.1 Larger Project Context . 1
1.2 Objectives and Approach . 1

2 Background and RelatedWork 3
2.1 Digital Wallets and Data Storage Applications 3

2.1.1 Cryptocurrency Wallets . 3
2.1.2 Payment Wallets . 3
2.1.3 Ticket Wallets . 3
2.1.4 Identity Wallets . 4

2.2 Android Architecture . 5
2.2.1 Linux Kernel . 5
2.2.2 Hardware Abstraction Layer (HAL) 5
2.2.3 Android Runtime (ART) . 5
2.2.4 Libraries and Android Framework 5
2.2.5 Application Layer . 5
2.2.6 Security Features in Android Architecture 7
2.2.7 Inter-Process Communication (IPC) and Intent Messaging . 7

2.3 Used Programming Languages/Technologies 7
2.3.1 Java Programming Language . 7
2.3.2 Kotlin Programming Language 7
2.3.3 Java Class File . 8
2.3.4 Java Archive . 8
2.3.5 Android Package . 8
2.3.6 Application Bundles . 8
2.3.7 Dalvik Executable . 8
2.3.8 Smali Assembly Language . 8
2.3.9 Javascript Programming Language 9
2.3.10 Dart Programming Language . 9
2.3.11 App Development Frameworks 9

2.4 Hyperledger Project . 13

3 Requirements and Threats 14
3.1 Requirements . 14

3.1.1 Affected Party: Identity Holder 14
3.1.2 Affected Party: Identity Verifier 15
3.1.3 Affected Party: Identity Issuer 17

3.2 Threats . 17

v

Contents vi

4 Security Measures in Android 23
4.1 Tapjacking / UI-Redressing . 23

4.1.1 Full Occlusion . 23
4.1.2 Partial Occlusion . 24
4.1.3 Custom Toasts . 24
4.1.4 Notification Bubbles . 24
4.1.5 System Alert Windows . 25
4.1.6 Cross-Application Embedding 25

4.2 Sandboxing . 25
4.2.1 Android 5.0 - API 21 . 25
4.2.2 Android 6.0 - API 23 . 26
4.2.3 Android 8.0 - API 26 . 26
4.2.4 Android 9.0 - API 28 . 26
4.2.5 Android 10.0 - API 29 . 26

4.3 KeyStore System . 26
4.3.1 Android 4.0 - API 14 . 26
4.3.2 Android 4.3 - API 18 . 27
4.3.3 Android 7.0 - API 24 . 27
4.3.4 Android 10 - API 29 . 27

4.4 Cryptography . 27
4.5 Biometrics . 27

4.5.1 APIs . 27
4.5.2 Usage . 28
4.5.3 Security . 28

4.6 Databases . 29
4.6.1 android.database.sqlite . 29
4.6.2 androidx.room . 29

4.7 Identity Credential API . 29
4.8 Network . 29
4.9 Permissions . 30

4.9.1 Normal Permissions . 30
4.9.2 Signature Permissions . 30
4.9.3 Dangerous Permissions . 30
4.9.4 Special Permissions . 30
4.9.5 Recent Changes . 31

4.10 App Signing . 31
4.10.1 APK Signature Scheme v1 . 31
4.10.2 APK Signature Scheme v2 . 31
4.10.3 APK Signature Scheme v3 . 31
4.10.4 APK Signature Scheme v4 . 33
4.10.5 APK Signature Issues and Vulnerabilities 33

4.11 Device Protection . 34
4.11.1 SELinux . 34
4.11.2 Verified Boot . 34
4.11.3 File-Based Encryption/Full-Disk Encryption 34
4.11.4 Operating SystemModifications 35
4.11.5 Key Attestation . 35
4.11.6 Root Detection . 35
4.11.7 Google Security APIs . 36

4.12 Third-Party Libraries . 37
4.12.1 SQLCipher . 37
4.12.2 Google Tink . 37
4.12.3 Themis . 37

5 Security Measure Evaluation Criteria 39
5.1 Storage Protection . 39

Contents vii

5.2 Network Communication Protection 40
5.3 User Interface Protection . 41
5.4 Permissions . 42
5.5 Update Policy . 43
5.6 Root Detection . 43
5.7 Reproducibility . 44
5.8 Business Logic in Native Code . 44

6 TestMethodology and Tools 46
6.1 Test Environment . 46
6.2 Toolchain . 46

6.2.1 Raccoon . 46
6.2.2 Apktool . 47
6.2.3 Jadx . 47
6.2.4 JD-GUI . 47
6.2.5 Java Class File Editor . 47
6.2.6 dex2jar . 47
6.2.7 MITM Proxy . 47
6.2.8 Xposed . 48
6.2.9 apk.sh . 48
6.2.10 Mobile Security Framework (MobSF) 48

7 Evaluation of ExistingWallets and Data Storage Apps 49
7.1 Evaluated Apps . 49

7.1.1 ID Wallets . 49
7.1.2 Ticket Wallets . 50
7.1.3 PDFWallets . 51
7.1.4 Open Crypto Wallets . 51
7.1.5 Closed Source Crypto Wallets . 53
7.1.6 Authenticator Apps . 53
7.1.7 Password Managers . 54
7.1.8 Banking . 54

7.2 Evaluation Results . 55
7.2.1 Storage . 55
7.2.2 Network . 55
7.2.3 User Interface . 55
7.2.4 Permissions . 57
7.2.5 Updates . 57
7.2.6 Root Detection . 58
7.2.7 Reproducible . 58
7.2.8 Native Code . 58

8 Results 59
8.1 Overview . 59
8.2 Best Practices for Wallet Apps . 60

8.2.1 Security . 60
8.2.2 Visual Design . 63

9 Conclusion 65

Bibliography 66

List of Acronyms

API Application Programming Interface

APK Android Application Package

AOSP Android Open Source Project

ART Android Runtime

CRUD Create, Read, Update, Delete

CVE Common Vulnerabilities and Exposures

CWE CommonWeakness Enumeration

DAC Discretionary Access Control

DAO Data Access Object

DEX Dalvik Executable

DID Decentralized Identifier

eIDAS electronic Identification, Authentication and Trust Services

FTP File Transfer Protocol

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

JAR Java Archive

JDK Java Development Kit

JSON JavaScript Object Notation

JSON-LD JSON for Linking Data

JRE Java Runtime Environment

JVM Java Virtual Machine

NFC Near Field Communication

NPM Node Package Manager

OEM Original Equipment Manufacturer

OS Operating System

OTP One Time Password

PIA Personal Identity Agent

PIN Personal Identification Number

ROM Read-Only Memory

SDK Software Development Kit

SQL Structured Query Language

SSI Self-Sovereign Identity

SSL Secure Sockets Layer

viii

List of Acronyms ix

TEE Trusted Execution Environment

TLS Transport Layer Security

UID Unique Identifier

UI User Interface

URL Uniform Resource Locator

UUID Universally Unique Identifier

UX User Experience

VPN Virtual Private Network

W3C World Wide Web Consortium

WORA Write Once, Run Anywhere

XML Extensible Markup Language

ZKP Zero-knowledge proofs

Chapter 1

Introduction

Due to their convenience, digital wallets are enhancing or even replacing phys-
ical wallets in many aspects of our lives, encompassing various domains such
as digital driver’s licenses, mobile banking and payments, event tickets or
cryptocurrency wallets. With the increasing prominence of digital wallets, the
question arises:

Is it even possible to develop a secure Digital Wallet for a common mobile
phone?

The security of these wallets is of utmost importance, as they are used to store
andmanage sensitive data, but proofing that such a system is secure is a diffi-
cult to impossible task.

1.1 Larger Project Context

Digidow1 is a researchproject that aims todevelopdecentralizeddigital identity
systems for the physical world. The ideal outcome of this project would be a
system that allows users to securely identify themselves in physical scenarios,
without any form of physical identity document or trusted mobile device, and
without privacy concerns [87].

The wallet is part of the PIA, the Personal Identity Agent, which is a software
that runs either on a device owned by the user or on a device owned by a trusted
third party. The PIA is responsible for storing andmanaging the user’s identity
documents, as well as providing them to verifiers upon verification request. In
the caseof a smartphone, thePIAwouldbeanapp installedon theuser’s device,
and the wallet would be a part of this app. This is only possible if the smart-
phone is able to securely store the user’s identity documents and provide them
to the PIA upon request.

1.2 Objectives and Approach

With this thesis,we aim to explore the feasibility of implementing a secure dig-
ital identity wallet on Android smartphones.

More specifically, we aim to

define the requirements for and threats to a digital identity wallet,

assess the current state of protection capabilities on Android smartphones,

dissect actualwallets to understand their implementation andhow theyuse
Android’s capabilities, and

1https://digidow.eu/

1

https://digidow.eu/

1 Introduction 2

define a list of theoretical capabilities and best-practice usage based on the
evaluation.

The steps to achieve this goal are:

1. Define the requirements for and threats to a digital identity wallet.

2. Assess the current state of platform security and privacy capabilities usable
for digital wallets on Android smartphones by

a) analyzing and categorizing best practice advice as theoretical capabili-
ties,

b) dissecting actual wallets to find out if and how they implement these
capabilities,

c) comparing the theoretical and actual capabilities, and

d) refining the list of theoretical capabilities andbest-practiceusagebased
on the evaluation.

The process of discovering and evaluating security and privacy capabilities is
repeated until a satisfactory level of detail is reached.

Chapter 2

Background and RelatedWork

2.1 Digital Wallets and Data Storage Applications

Digital wallets are applications that securely store blocks of data. The proposed
use case, security level, and implementation effort of suchwallets vary greatly,
and this can also be seen in the number of existing applications.

2.1.1 CryptocurrencyWallets

Cryptocurrency wallets are used to store cryptocurrency, such as Bitcoin,
Ethereum, or Dogecoin. They usually only store the private key of the user,
which is used to sign transactions. The public key is derived from the private
key and can be used to receive cryptocurrency. The challenge with cryptocur-
rency wallets is that the private key needs to be stored securely, as it is the only
way to access the cryptocurrency.

2.1.2 PaymentWallets

Apple Pay

ApplePay1 is Apple’smobile payment service. Users canadd their credit or debit
cards to the wallet and use their Apple device to make payments at contactless
terminals. The data is stored andmanaged by the Apple Wallet app.

Google Pay

Google Pay2 is a wallet platform by Google that allows users tomake payments
using their Android devices. It is integrated into the Google Wallet app, which
also allows users to store credit cards, concert tickets, boarding passes, or loy-
alty cards.

2.1.3 TicketWallets

Ticket wallets are used to store tickets for events, such as concerts, movies, or
public transport. Their functionality usually consists of away to import tickets,
store them securely, and display themwhen needed.

1https://www.apple.com/at/apple-pay
2https://pay.google.com/intl/de_de/about

3

https://www.apple.com/at/apple-pay
https://pay.google.com/intl/de_de/about

2 Background and Related Work 4

2.1.4 IdentityWallets

When it comes to identity wallets, there are twomain approaches: the central-
ized approach and the decentralized approach.
In the centralized approach, a central authority handles themanagement of the
digital identity. When a user requests verification for a service, that request is
sent to the central authority, which confirms the user’s identity before sending
the confirmation to the service provider.
In the decentralized method, it is up to the user to manage their identity wal-
let and confirm their identity. As a result, the user doesn’t need a centralized
authority to access services. A user usually feels more secure using a decen-
tralized approach because they have control over their identity and no central
authority can access it. To the service provider, however, the decentralized ap-
proach is less secure because the service provider cannot easily trust users are
who they claim to be.

AppleWallet

Apple started rolling out the support for digital identity documents in theWal-
let app in selected US states in 2022. Users can add their ID to the wallet by
downloading it from the state’s website, optionally also adding a selfie or pic-
tures of the front and back of the physical ID to verify the identity of the user.
At the time of writing, only US driver’s licenses and state IDs are supported,
and the places where they can be used are limited to certain airports and TSA
checkpoints.

GoogleWallet

Similar to Apple, Google started rolling out support for digital identity docu-
ments in the Google Pay app in selected US states in 2023. The implementation
depends on Googles IdentityCredential API, which is a part of the Android Jet-
pack Security library. At the time of writing, similar to Apple, only US driver’s
licenses and state IDs are supported, and the places where they can be used are
limited to certain airports and TSA checkpoints.

ONCEWallet

The ONCE Wallet is a decentralized identity wallet concept developed by the
ONCE project [45]. It is meant to hold digital identity documents, such as
driver’s licenses, passports, or vaccination certificates. The ecosystemconsists
ofmultiple independent systems, such as thewallet, the lifecyclemanagement
systemor a central ID gateway. By the end of the project, the concepts could not
be fully implemented.

Digidow PIA

TheDigidowPIA ismeant to be, among other things, a storage for digital iden-
tity related documents. It ismeant to use these documents dynamically for au-
thentication and authorization, and to be able to selectively disclose parts of
the documents to third parties. The PIA is meant to be used in a decentralized
way, where the user has full control over their data, and the issuer of the data
is not involved in the authentication process.

2 Background and Related Work 5

2.2 Android Architecture

The following section should give a brief overview of the Android architecture
and the security features that are built into the system. The contents are based
on the Android Open Source Project [24], GeeksforGeeks [69], Mayrhofer et al.
[99], andRohanVaidya [124]. Figure 2.1 shows the elements of each layer of the
Android software stack.

2.2.1 Linux Kernel

The Linux Kernel, the foundation of the Android platform, provides a level of
abstraction between the device hardware and the rest of the software stack. In
Android, the Linux Kernel ismodified to include custom libraries and APIs that
are not present in the standard Linux Kernel.

2.2.2 Hardware Abstraction Layer (HAL)

TheHardwareAbstractionLayer (HAL) inAndroidprovides standard interfaces
that expose device hardware capabilities to the higher-level Java API frame-
work. The HAL allows for the encapsulation of vendor-specific implementa-
tions, ensuring that Android applications and frameworks can interact with
hardware drivers in a uniform manner without needing to know the details of
each hardware configuration.

2.2.3 Android Runtime (ART)

The Android Runtime (ART) is the managed runtime used by applications and
some system services on Android, that enables developers to write Android
apps using the Java programming language. Android applications are compiled
into native machine code during installation, which is then executed by the
ART. ART superseded the Dalvik Virtual Machine3, which was used in earlier
versions of Android, but still supports the Dalvik Executable (.dex) format.

2.2.4 Libraries and Android Framework

The Libraries and Android Framework layer provides many services including
windowmanagement, view system, resourcemanagement, and lifecycleman-
agement.Noteworthy libraries includeWebKit,which is used for renderingweb
content; SQLite, a lightweight database engine for data storage;OpenGL,which
provides APIs for 2D and 3Dgraphics rendering; and libc, the standard C library
offering a range of system functionalities.

2.2.5 Application Layer

The Application Layer is where applications run. Each application runs in its
own process within its own instance of the Android Runtime (ART). This layer
includes the applications that ship with the device, as well as third-party ap-
plications that are installed by the user.
3https://source.android.com/docs/core/runtime

https://source.android.com/docs/core/runtime

2 Background and Related Work 6

Figure 2.1: The Android software stack. (Source: [24], licensed under CC BY 2.5)

https://creativecommons.org/licenses/by/2.5/

2 Background and Related Work 7

2.2.6 Security Features in Android Architecture

Android’s securitymodel is based on sandboxing on asmany layers as possible,
and on the principle of least privilege. Using verified boot, file-based encryp-
tion, and hardware-backed security, Android ensures that the device is secure
from themoment it boots up, and viaKeyStore it provides a secureway to attest
the state of the device at runtime.

2.2.7 Inter-Process Communication (IPC) and IntentMessaging

Interprocess Communication (IPC) on Android allows applications and com-
ponents to communicate with each other and share data in a secure and ef-
ficient manner. Android provides several mechanisms for IPC, including the
use of Binder, which is the underlying framework facilitating direct method
calls between processes. Through Binder, developers can implement services
that can be accessed from other applications. Intents are another IPC mech-
anism, enabling communication between components like activities and ser-
vices. ContentProviders allow for the sharingof structureddatabetweenappli-
cations, while Messenger and Broadcast Receivers facilitate message passing
and broadcasting system-wide events, respectively.

2.3 Used Programming Languages/Technologies

2.3.1 Java Programming Language

Java4 is an object-oriented, class-based, and concurrent programming lan-
guage [114]. The Language is meant to be platform-independent, and is com-
piled to Java bytecode, which is then run on the Java Virtual Machine (JVM),
which is platform-dependent.

In the context ofAndroid, Java is themainprogramming languageused towrite
Android applications. It is used to write the business logic of the application,
and to access the Android SDK, which is written for Java. Android applications
are compiled to Dalvik bytecode, which is then run on the ART.

2.3.2 Kotlin Programming Language

Kotlin5 is a JVM-based programming language developed by JetBrains, the
company behind the IntelliJ IDEA IDE (and in turn, also Android Studio, which
is a fork of that) [89]. Since Kotlin also runs on the JVM, it is fully interoperable
with Java, can be used in the same project as Java, and Java code can be called
from Kotlin, and vice versa.

Over the years, Kotlin has become the preferred language for Android develop-
ment, and is now the official language for Android development.

4https://www.oracle.com/java/technologies/introduction-to-java.html
5https://kotlinlang.org/

https://www.oracle.com/java/technologies/introduction-to-java.html
https://kotlinlang.org/

2 Background and Related Work 8

2.3.3 Java Class File

The .class file is the output of the Java compiler, and contains lower-level code
that can be run on the JVM [115]. It defines the constants, the access flags, the
fully qualified name of the class, the fully qualified name of the superclass, the
interfaces that the class implements, the fields, and the methods of the class.

2.3.4 Java Archive

The .jar file is a specialized .zip archive that contains the .class files needed in
an application or library, and a manifest file that describes the contents of the
archive [110, 117]. It is the main way to distribute Java applications, and can be
run on any platform that supports a JVM if the version of the JVM is compatible
with the version of the .class files in the .jar archive.

2.3.5 Android Package

An .apkfile format is amodified .jar file that contains the compiledAndroid ap-
plication, a manifest file, resources like images, sounds, and layouts and sig-
natures that are used to verify the integrity of the application [117]. There are
multiple versions of the .apk file format, which are explained in section 4.10.

2.3.6 Application Bundles

The most recent app format on Android is the Android App Bundle format6,
which is amore efficient way to distribute Android applications, as it only con-
tains the resources that are needed for the target device [71]. These app bundles
are split intomultiple .apkfiles, and on the target device, only the .apkfiles that
are needed are downloaded and installed.

2.3.7 Dalvik Executable

These files are the Android equivalent of .class files, and contain the com-
piled application code [117]. In the actual implementation, the JVM-compatible
source code is compiled into larger .dex files, which contain the compiled code
for the entire application. There might bemultiple .dex files in an .apk though,
as there is a method limit of 65,536methods per .dex file.

2.3.8 Smali Assembly Language

Smali7 is an assembly language for the Dalvik Virtual Machine and ART [88]. It
is a common output format for Android decompilers, as it is a human-readable
representation of the .dex code. It can be used to decompile and recompile An-
droid applications, and to modify functionality, but it is not the most user-
friendly way to do so.

6https://developer.android.com/guide/components/fundamentals
7https://github.com/JesusFreke/smali/wiki

https://developer.android.com/guide/components/fundamentals
https://github.com/JesusFreke/smali/wiki

2 Background and Related Work 9

2.3.9 Javascript Programming Language

JavaScript is an interpreted functional programming language that conforms
to the ECMAScript language specification [106]. JavaScript is mainly used to
write web applications, but there are also implementations of JavaScript run-
times for other platforms, like Node.js, which runs on Googles Chromium en-
gine, and can be used to write server-side applications. There are also imple-
mentations of JavaScript runtimes for mobile platforms, which can be used to
write mobile applications. These applications often run in a native webview,
which is an element that can render web content.

2.3.10 Dart Programming Language

Dart8 is a programming language developed by Google, and is mainly used to
write web applications using the Flutter framework[73]. It is a JavaScript-like
language that looks like a more organic implementation of React Native, with
a syntax that can natively provide a similar functionality as React Native.

2.3.11 App Development Frameworks

Third-party frameworks are often used to simplify the development of apps,
and to provide a unified API for multiple platforms. They are often open-
source, and can be audited by the community, but they can also introduce new
security vulnerabilities, and can be hard to maintain, since they are often de-
veloped by volunteers. There are two main types of frameworks: those that
compile to native code, and hybrid apps that run in a virtual machine, usually
a JavaScript engine in a native webview element. This section lists some of the
most popular frameworks and their security implications. Generally, it can be
said that more high-level frameworks make using secure best practices eas-
ier, but they often lack the flexibility to easily implement custom lower level
security measures.

Flutter

Flutter9 is a cross-platform app development toolkit developed by Google [75].
It compiles to platform-specific code and can be used to build apps that run on
iOS, Android,Windows,macOS, Linux, and theweb,with themain target being
mobile apps.

In the case of Android, Flutter apps are compiled to native ARM code, which
means that the result of a compilation is a libflutter.so file, that contains the
compiled flutter engine, and a libapp.so file, that contains the compiled Dart
code (see Figure 2.2 for a more detailed overview). There is also a Java wrapper
that is used to start the Flutter engine, and to provide an interface between the
Flutter app and platform-specific libraries.

Reverse engineering a Flutter app is not trivial [7, 43], but it is possible, espe-
cially since Android-specific code is written in Java or Kotlin, and can be de-
compiled using existing tools.

8https://dart.dev/
9https://flutter.dev/

https://dart.dev/
https://flutter.dev/

2 Background and Related Work 10

Figure 2.2: A stylized diagram of the elements present in a Flutter application
(Source: [74], licensed under CC BY 4.0)

React Native

React Native10 is a cross-platform app development toolkit developed by Face-
book. It allows developers to abstract the UI and parts of the business logic of
their appas a single codebase, andonlywriteplatform-specific codewhennec-
essary.

React Native is interesting, as the development is made easier by its abil-
ity to leverage the vast JavaScript ecosystem, including npm packages. More-
over, React Native supports hot reloading, whichmeans developers can see the
changes they make in real-time without having to rebuild the application.

A React Native app is run in two separate threads, one that interacts with the
host UI, and one that runs the JavaScript code. Platform-specific code can be
written in Java or Kotlin for Android and in Objective-C or Swift for iOS, and
can be called from the JavaScript code using a bridge. This native code is also
always run in a single thread, unless the code itself spawns new threads. This is
particularly useful when the developer needs to optimize certain aspects of the
application, access platform-specific APIs, or write high-performance, mul-
tithreaded code. In the case of a digital identity wallet, the access to Keystore

10https://reactnative.dev/

https://creativecommons.org/licenses/by/4.0/
https://reactnative.dev/

2 Background and Related Work 11

functionality, especially Keystore attestation, would have to be implemented
manually for each platform.

Despite itsmany advantages, ReactNative also presents certain challenges. For
instance, achievinghighperformance for complexanimationscanbechalleng-
ing due to the asynchronous nature of the React Native bridge, which can lead
to delays. Reverse engineering a React Native app is mademore difficult by the
fact that the engine is compiled to native code, which leads to manymore files
thatneed tobedecompiled toget a full pictureof the app. Furthermore, asReact
Native is still evolving, developersmay encounter issues related to compatibil-
ity and stability.

Given the complexity of the build process, it is not trivial to set up a repro-
ducible build environment, but since Node.js apps can be built reproducibly, it
is possible to build pure React Native apps reproducibly.

Xamarin / .NETMAUI

Xamarin11 / .NET MAUI (Multi-platform App UI)12 is a cross-platform app de-
velopment framework developed byMicrosoft. Similar to other cross-platform
technologies, it allowsdevelopers towrite a single codebase, this time inC#and
.NET, and compile it into native applications for iOS and Android.

Microsoft provides a set of libraries that abstract the platform-specific APIs,
and allows developers to access them from their shared codebase. The code is
then compiled into a native executable, and can be run on the target platform
via an addedMono runtime, which is shipped with every app.

If the developer needs to access platform-specific APIs, they can do so bywrit-
ing platform-specific code, and calling it from the shared codebase via JNI or
Objective Sharpie [116].

Apache Cordova

Apache Cordova13 (formerly known as Adobe PhoneGap14) is an open-source
platform that enables developers to build mobile applications using web tech-
nologies. It acts as a bridge between the web application and the native device
APIs, allowing developers to access device APIs like the camera, contacts, and
geolocation, while the interface is rendered in a nativeWebView (see Figure 2.3
for a more detailed overview).

Cordova plugins are used to access native device features from the web appli-
cation. They are usually wrappers for native code that is executed in the native
runtime, and can be accessed from the web application using JavaScript. Cor-
dova itself comes with a set of core plugins that are included in every Cordova
app, and there are a lot of third-party plugins that can be used to access more
advanced device features, like the fingerprint sensor, or the NFC reader.

An example of a third-party plugin is the cordova-plugin-fingerprint-
aio [107], which is a wrapper for the Android Fingerprint API and the iOS
equivalent, that allows developers to use the fingerprint sensor from their
Cordova apps.

11https://dotnet.microsoft.com/en-us/apps/xamarin
12https://dotnet.microsoft.com/en-us/apps/maui
13https://cordova.apache.org/
14https://cordova.apache.org/announcements/2020/08/14/goodbye-phonegap.html

https://dotnet.microsoft.com/en-us/apps/xamarin
https://dotnet.microsoft.com/en-us/apps/maui
https://cordova.apache.org/
https://cordova.apache.org/announcements/2020/08/14/goodbye-phonegap.html

2 Background and Related Work 12

Cordova Application

HTML config.xml

Web App

Javascript

CSS

Resources

HTML Rendering Engine
(WebView)

Cordova Plugins

Accelerometer

Camera

Device

Contacts

Geolocation

Media

Network

Storage

Custom Plugins

C
or

do
va

AP
Is

Cordova
Native APIs

O
S

AP
Is

O
S

AP
Is

H
TM

L
AP

Is

Services

Sensors

Input

Graphics
Mobile OS

Figure 2.3: A stylized diagram of the Cordova application architecture [134]

Capacitor by Ionic

Ionic15 is a framework of UI components for web apps that are optimized for
mobile devices. IonicNative (nowadays AwesomeCordova Plugins [56]) is a set
of wrappers for Cordova plugins that allows developers to access native device
features from their Ionic apps. Capacitor is a cross-platform runtime that al-
lows developers to build web apps that run natively on iOS, Android, Electron,
and the web as Progressive Web Apps (PWAs).

Ionic started as a set of AngularJS components for Cordova, until the team be-
hind it decided to create their own runtime, called Capacitor, which is now
the default runtime for Ionic apps. Ionic and the Capacitor runtime are open-
source, and can be audited by the community, but they are mainly developed
by engineers at Ionic, Inc.

Kivy

Kivy16 is a niche framework for building cross-platform apps using
Python [92]. Kivy, similar to Ionic, is a collection of multiple related Projects,
such asKivy, python-for-android, Buildozer, andPyJNIus. Kivy is the frontend
framework, python-for-android is a toolchain for building Android apps using
15https://ionicframework.com/
16https://kivy.org/

https://ionicframework.com/
https://kivy.org/

2 Background and Related Work 13

Python, Buildozer is a tool for automating the build process, and PyJNIus is a
library for accessing Java classes from Python. The interesting part is PyJNIus,
which allows developers to access the Android SDK from Python, whichmeans
that it is possible to use the Android SDK to implement security measures,
and to use the Android Keystore to store cryptographic keys, but in reality this
just adds extra steps to the usage, since no specific libraries exist that abstract
exiting security measures, and the developer has to implement everything
manually. This is only useful if a large Python codebase already exists, and the
developer wants to port it to Android, but even then there is a high probability
that a rewrite of the code in Java or Kotlin is easier.

2.4 Hyperledger Project

The Hyperledger Project17, supported by the Linux Foundation, is a collective
open-source initiative aimed at promoting the development and application
of blockchain technologies across various industries [67]. It is the umbrella
for many open source blockchain and distributed ledger technologies, includ-
ingHyperledger Fabric, Hyperledger Indy,Hyperledger Aries, andHyperledger
Ursa. There are also a number of other projects and systems that depend on and
sometimes are closely intertwined with these projects, such as the Sovrin Net-
work.

These blockchain technologies are used in digital identity context to provide
a decentralized, secure, and verifiable way to manage digital identities. This is
achievedby storing identity data and/or issuer verificationdataonablockchain
to make it immutable and by providing ecosystems to surround this function-
ality.

Hyperledger Fabric18 is a modular blockchain framework that separates
roles between nodes, runs smart contracts (chaincode), and allows for cus-
tomizable consensus andmembership services.

Hyperledger Indy19 is a distributed ledger designed for decentralized iden-
tity.

Hyperledger Aries20 is a toolkit for building blockchain-based identity
management solutions.

Hyperledger Ursa21 is a shared cryptographic library, providing a modular,
flexible, and standardized cryptographic library that canbeused inavariety
of distributed ledger and identity systems.

17https://www.hyperledger.org/
18https://www.hyperledger.org/projects/fabric
19https://www.hyperledger.org/projects/hyperledger-indy
20https://www.hyperledger.org/projects/aries
21https://www.hyperledger.org/blog/2018/12/04/welcome-hyperledger-ursa

https://www.hyperledger.org/
https://www.hyperledger.org/projects/fabric
https://www.hyperledger.org/projects/hyperledger-indy
https://www.hyperledger.org/projects/aries
https://www.hyperledger.org/blog/2018/12/04/welcome-hyperledger-ursa

Chapter 3

Requirements and Threats

These requirements and threats are based on the considerations of the W3C
Verifiable Credentials DataModel [130], and contain further refinements based
on the evaluation of digital identity wallets.

There are also several other sources that provide insights into the requirements
and threats of digital identity wallets. A comprehensive overview of usable se-
curity is presentedbyTheofanos [137],while ametastudyonusable privacy and
security is explored by Distler et al. [58]. Implementation decisions concern-
ingOpenID andVerifiable Credentials (VC) are discussed byHoops andMatthes
[80], alongside explanations of DIDs and VC use cases byMazzocca et al. [100].
Additionally, considerations regarding data exchange in the context of an eI-
DAS PoC are outlined by Gonçalves et al. [70], while privacy threats within the
eIDAS framework are examined byKutylowski et al. [94]. A resource discussing
digital identities is provided in [96], and insights into usable digital wallets are
presented by Krauß et al. [93].

3.1 Requirements

The following requirementsare split into threegenericparties, IdentityHolder,
Identity Verifier, and Identity Issuer, which all have their respective role in the
W3C Verifiable Credentials data model [130], as each party has different re-
quirements for the Digital Identity Wallet.

3.1.1 Affected Party: Identity Holder

As the owner of the identity, the user is the most affected party.

The wallet should be designed to minimize complexity, minimize loading
times, and avoid other inconveniences for the user. The user should be able to
use thewallet without having to learn a new interface or a newway of thinking.
In the worst case, a user of a Digital Identity Wallet also has to face the conse-
quences of a compromised identity, which should be avoided at all costs.

User-friendly design
The wallet should be user-friendly and intuitive, with clear and concise
instructions provided to guide users through the process of creating and
managing their digital identities.

Privacy protection
The wallet should be designed to protect the privacy and confidentiality of
the users’ personal information.

14

3 Requirements and Threats 15

Multi-layered security
The wallet should provide multiple layers of security to prevent unautho-
rized access or modification. Neither a phone thief nor a hacker should be
able to access or use the users’ digital identities.

Scalability
Thewallet should be designed to be scalable andflexible, able to accommo-
date a large and growing number of digital identities and adapt to evolving
technology and regulatory requirements.

Availability
The wallet should provide the digital identities which are always available,
even in the case of system outages or other disruptions.

Recovery
The wallet should provide reliable backup and recovery options, allowing
users to restore their digital identities in case of device loss, theft, or other
incidents.

Non-discriminatory
The wallet should be designed to be non-discriminatory, ensuring that all
users have equal access to the service.

3.1.2 Affected Party: Identity Verifier

A Verifier is any entity responsible for the verification of an identity.

The followinguser stories for digital identitywalletswere constructed fromthe
aforementioned sources, Domeyer et al. [61], European Commission [63] and
PwC Luxembourg [121].

Airport security personnel may require a mobile identity wallet that can
quickly and securely verify the identity of travelers. Travelers may come
from different jurisdictions with different issuing authorities, travel for an
extendedperiod of time, andmayhave different requirements for entry and
exit visas. In addition to visa requirements, there may be other entry re-
quirements such as proof of vaccination, negative COVID-19 test results, or
travel insurance required. The provided identity may need to contain in-
formation such as name, date of birth, address, photo or other biometric
identification as well as potentially contain information about the trav-
eler’s routes. The provided identitymust also not be invalidated by the time
of verification.

Police officersmay require amobile identity wallet that can quickly and ac-
curately verify a persons’ identity. The provided identity may need to con-
tain information such as name, date of birth, address, photo identification
andpotentially biometric information. The provided identitymay also need
to integratewith lawenforcementdatabases toprovideadditional informa-
tion on criminal records or outstanding warrants.

Banks may require a mobile identity wallet that can verify the identity of
customers for opening accounts, applying for loans, or conducting finan-
cial transactions. The provided identity may need to contain information
such as name, address, or photo identification. The provided identity may
also need to integrate with banking systems to verify the customer’s credit
history and financial standing.

Government agencies may require a mobile identity wallet that can verify
the identity of citizens for access to government services or benefits. The

3 Requirements and Threats 16

provided identity may need to contain information such as name, date of
birth, or photo identification. The provided identity may also need to inte-
grate with government databases to verify citizenship or immigration sta-
tus.

Employers orhuman resourcespersonnelmaydesire amobile identitywal-
let that can verify the identity of job applicants or employees for back-
ground checks, employment verification, or access to company facilities.
The provided identity may need to contain information such as name, date
of birth, or photo identification. The provided identity (or an additional
identities) may also be able to provide employment history or educational
background.

Bouncersmayrequireamobile identitywallet that canquicklyverify theage
and identity of patrons entering a venue. The provided identitymay need to
contain information such as name, to check for house bans, date of birth,
and photo identification, or a similar biometric check, as well as be able to
quickly and easily verify the authenticity of the ID. A bouncer will probably
only need to verify that a person is over a certain age, and not need to know
the exact date of birth.

Ticket inspectors or event organizers may require a mobile identity wallet
that can verify the identity and ticket information of attendees entering an
event. The provided identitymayneed to contain information such as name
and photo identification, as well as be able to quickly and easily verify the
authenticity and uniqueness of the ticket. The provided identity (or addi-
tional identities)may also be able to provide ticket information, such as the
event name, date, location, ticket type, and if the ticket has been used be-
fore.

Online service providersmay require amobile identitywallet that can verify
the identity of users for account creation or access to sensitive information.
The provided identity may need to contain information such as name, ad-
dress, e-mail, and photo identification. The provided identity also needs to
integrate with online systems for verification purposes such as two-factor
authentication [44, 85]. Most online services, however, should not require
a full digital identity, and instead require unique pseudonymous identities,
as this enhances privacy and reduces the risk of data breaches.

These individual requirements can thusbe summarized into the followinggen-
eral requirements for a gatekeeping verifier:

Identity verification
The mobile identity wallet should provide a secure and reliable method for
the gatekeeper to verify the identity of the user.

Ease of use
The mobile identity wallet should be user-friendly, making it easy for the
gatekeeper to verify the user’s identity quickly and efficiently.

Privacy protection compliance
Themobile identity wallet should ensure the privacy of the user’s personal
information. The gatekeeper should only be able to access the necessary
information for identity verification purposes, and no other personal data
should be disclosed without the user’s consent as this could interfere with
the user’s privacy rights.

Data integrity
Themobile identitywallet should ensure the integrity of theuser’s personal
data. The gatekeeper should be confident that the information presented to
them is accurate and has not been tampered with.

3 Requirements and Threats 17

Interoperability
The mobile identity wallet should be interoperable across various gate-
keepers, platforms, andorganizations, ensuring that theuser’s identity can
be verified seamlessly across different contexts.

Handle multiple identity related documents
The mobile identity wallet should be able to provide multiple identity re-
lated documents and information, such as:u Biometric data (fingerprints, face, etc.)u Identifying data (name, date of birth, etc.)u Vehicle permissions (car, airplane, etc.)u Tickets (concert, train, etc.)u Educational information (school, university, etc.)

3.1.3 Affected Party: Identity Issuer

An identity provider, in this context, is a third party that provides the user with
a digital identity. This can be a government agency, a bank, or any other en-
tity that is trusted by the user and the gatekeeper to issue a digital identity.
These authorities also face risks when issuing identities, as they are respon-
sible for the availability of the service they provide. For example, if a user relies
on digital identities, and the system is not fully functional, the user might not
be legally able to enter a country. The documents they authored need to be al-
ways available, correct, and up to date. This means a wallet should be able to:

Accurate information / Data integrity
Ensure that the digital identities are up-to-date and accurately reflect the
information provided by the identity provider.

Provisioning
Provide ameans for the identity provider to issue digital identities to users.

Revocation
Provide a means for the identity provider to revoke or invalidate a digital
identity if necessary.

Access control / User authorization
Provide appropriate access controls to ensure that only authorized parties
can access the assigned digital identities.

Ensure trust
The identity provider needs a wallet to protect the security of the digital
identities they issue, as users and verifiers only trust and use services that
they know are secure. This includes the protection of the digital identities
from unauthorized use.

3.2 Threats

As a general starting point, the inverse of the requirements from section 3.1
can be used to identify threats, as non-fulfillment of a requirement is a threat
to the security, the functionality, the usability and in general the acceptance of
a system.

3 Requirements and Threats 18

User-friendly design

T.1 Malicious actors may create phishing wallets with similar designs to de-
ceive users and steal their digital identities [49, 68].

UI imitation/phishing attacks are a common threat to any system that is
used by a large number of people. The wallet’s design can andwill be im-
itated by malicious actors to deceive users and steal their digital identi-
ties. In most cases, this attack will fail, but attackers only need a small
percentage of users to fall for the attack to make it profitable. Especially
with AI-based UI generation [1], it is becoming increasingly difficult to
distinguish between a real and a fake UI.

T.2 The wallet’s design may not be intuitive enough, leading to user errors
that compromise the security of their digital identities [68].

Users may accidentally share their digital identities with unautho-
rized parties. In our case, this could be a malicious sensor that might
or might not be known to be malicious.

Usersmay accidentally sharemore information than intendedor nec-
essary with other parties. In our case, this could mean that a user
might share a full facial embeddingwith a sensor,while amulti-party
computation would be sufficient.

Users may misuse the wallet’s features, leading to deanonymization
or other privacy violations. In our case, this could mean that a user
might share a full digital identity with a sensor that is not allowed to
have certain information.

Privacy protection

T.3 The wallet’s privacy protection measures may be insufficient, making it
easier for hackers to access and steal user’s personal information [2].

In our case, this includes the network traffic, the data stored on the de-
vice, and the data shared with other parties. This is an implementation
issue for both the wallet and the overall system, as the wallet might be
forced to allow privacy violations due to the system’s design.

Holder verification

T.4 On the device, the method used to verify the identity of the user may
be vulnerable, allowingmalicious actors to impersonate legitimate users
and gain unauthorized access to their digital identities [140].

Multi-layered security

T.5 Malicious actors could exploit weaknesses in any layer of security to gain
unauthorized access to user’s digital identities [108].

This includes thephysical security of thedevice, the security of thewallet,
and the security of the overall system. We can only effectively tackle se-
curity threats in our own implementations, but we can still be affected by
security breaches in other parts of the system. Within the wallet it is also

3 Requirements and Threats 19

important to note that the wallet is only as secure as its weakest link, so
any securitymeasure that is not fully implemented or not fully functional
is a potential threat or overlooks a potential threat.

T.6 A security breach could compromise multiple layers of security, making
it easier for hackers to steal user’s digital identities [108].

This is especially relevant for attacks on the system the wallet is running
on, because issueswithin elements thatmultiple layers of security rely on
can lead to a broad compromise of the wallet.

T.7 The wallet’s security measures may be too complex or time-consuming,
discouraging users from using the wallet and potentially reducing its se-
curity [137].

This is a common issue with security measures, as users will often try to
bypass them if they are too complex or time-consuming.

T.8 A thiefmight try to bypass securitymeasures byusingbrute force attacks,
social engineering, or other methods [54].

It boils down to theweakest link argument, and too similar layers of secu-
rity. If, for example, thewallet is secured by two factors, a fingerprint and
a local authenticator app, any person with a stored fingerprint to unlock
the device can bypass the wallet’s entire security. This means the layers
of security need to be different enough to not be bypassed by the same
attack.

Scalability

T.9 Thewalletmay not be scalable enough to handle a large number of digital
identities, leading to slow performance and reduced security [48].

This is a common issue with any system that is not designed to be scal-
able. In our case, slow performance can lead to users not using thewallet,
users trying to bypass security measures, or users trying to speed up the
process by using unsafe methods, such as sharing their digital identities
with other parties or using third party tools/add-ons.

T.10 Thewalletmaynot be able to adapt to evolving technology and regulatory
requirements, making it obsolete and potentially insecure [48].

In any case, the wallet needs to be able to adapt to new technology and
regulatory requirements. This is especially important for a wallet that is
used for digital identities, as the requirements for digital identities are
constantly changing. Scalability is affected by the ability to adapt to new
requirements, as the wallet needs to be able to handle new types of digi-
tal identities, newsecuritymeasures, or newprivacy protectionmeasures
ideally without a complete overhaul of the system.

Availability

T.11 System outages or other disruptions could make user’s digital identities
unavailable, potentially causing inconveniences, financial losses or even
health risks [95].

In time critical scenarios, such as public transport, the availability of the
digital identities is crucial. If the wallet is unable to provide the digital

3 Requirements and Threats 20

identities when needed, or if the response time is too slow, users might
be unable to enter trains, buses, or other public transport on timeor at all.

Similarly, in health care, the availability of patient data is crucial. Here,
patients might be unable to receive necessary treatment in time or at all.

Recovery

T.12 Backup and recovery optionsmay be insufficient or unreliable, leading to
loss of user’s digital identities and potentially causing inconveniences,
financial losses or even health risks [142, 143].

Users are expected to relyon thewallet to store their digital identities, and
if the wallet is unable to provide a reliable backup and recovery option,
users might lose access to their digital identities. Recovery options are
important in the case of a lost, stolen or damaged device, as users should
be able to continue using their digital identities without any issues. If a
recovery option is not available, users might be unable to access critical
resources, such as health care, financial services, or travel documents.

T.13 Hackers could exploit recovery options to gain unauthorized access to
user’s digital identities [139].

Recovery options are a potential security risk, as they are often used to
bypass securitymeasures. The existence of a recovery option implies that
there is data stored somewhere that can be used to recover the digital
identities, and this data is a potential target for hackers. This means if
the recovery option is not as secure as the wallet itself, it will be a prime
target for hackers.

Identity verification

T.14 The method the gatekeepers use to verify the identity of the user may
be vulnerable, allowingmalicious actors to impersonate legitimate users
and gain their privileges [140].

Ease of use

T.15 The identity verification process may be too complicated or time-
consuming, discouraging gatekeepers from verifying identities correctly
(as observed with COVID-19 Certificates1) [60].

This overlaps with the user-friendly design and the multi-layered secu-
rity threats, but here the focus is broader, as the wallet ecosystem in its
entirety needs to be easy to use, not just specific components. The gate-
keeper needs to be able to verify the identity of the user quickly and ef-
ficiently, and if the process is too complicated or time-consuming, the
gatekeeper might try to bypass the process.

1https://twitter.com/fabian_schmid/status/1443193052521275400/photo/1

https://twitter.com/fabian_schmid/status/1443193052521275400/photo/1

3 Requirements and Threats 21

Privacy protection compliance

T.16 The Gatekeeper may misuse or mishandle user’s personal information,
leading to reputational damage for the identity provider [91].
This is a potential threat for the identity provider, as they are responsible
for the privacy of the user’s data. Users rely on the identity provider to
protect their privacy, and if the identity provider fails to do so, the user
might lose trust in the identity provider and the wallet.

T.17 The wallet may fail to comply with privacy protection laws and regula-
tions, violating their privacy rights and potentially leading to legal liabil-
ity [84].
Legal compliance is the very basis of a digital identity system, as the sys-
tem needs to comply with the laws and regulations of the jurisdictions it
operates in to be legally valid. If the wallet fails to comply with privacy
protection laws and regulations, the identity providermight face legal li-
ability. In theworst case, certain elements of the systemmight be banned
from certain jurisdictions, making the system unusable for a large num-
ber of users.

Interoperability

T.18 Incompatible systems or protocols could result in errors or delays in the
identity verification process,making it difficult or impossible for users to
access resources [60].
All the elements in the system need to be able to communicate with each
other, and if they are unable to do so, the system will not work properly.
This entails the need for proper standards and protocols, as well as the
need for proper error handling and recovery options. The standards need
to define exact APIs and data formats, potentially including fallback op-
tions for older versions.

T.19 Sharing personal data acrossmultiple platforms could result in informa-
tion leakage or the creation of a larger attack surface for hackers [96].
Interoperability brings a large attack surface, as every implementation of
a standard is a potential target for hackers. This means that the compo-
nents need to trust each other whilst at the same time not knowing each
other, which is a challenging task.

Providemultiple identity related documents

T.20 Featuring documents from more providers could create a larger attack
surface for hackers [6, 66].
Combining multiple credentials from different providers into a single
wallet increases the attack surface, as every provider is a potential tar-
get for hackers. The system therefore needs to make sure that identities
from different providers can only be issued by their respective providers,
and leaked data from one provider does not affect the other providers.

T.21 The wallet could be hacked, resulting in the theft of user data and the ex-
posure of larger amounts of sensitive information [6].
If multiple documents or credentials are stored in a single wallet, this
wallet becomes a single point of failure for all the documents and cre-
dentials.

3 Requirements and Threats 22

T.22 If a wallet features wrong documents from problematic providers, all
parties may lose trust in the wallet and the correct identities [68, 79].

If the wallet features documents from problematic providers, the entire
wallet might be considered untrustworthy, and all the documents and
credentials in the wallet might be considered untrustworthy. This could
lead to a loss of trust in the wallet and the digital identity system as a
whole.

Accurate information

T.23 Users may use or select incorrect or outdated information, resulting in
errors or delays in the identity verification process [59].

A digital identity systemmust be able to handle outdated, incorrect or in-
valid data, as there will be such occurrences in any system.

T.24 Employees or contractorswith access to the identity provider couldmod-
ify user data [8].

The authorized personnel of the identity provider are a potential threat
to the system, as they have access to the data and could modify it. Com-
pletely preventing this is impossible, as the identity provider needs to be
able tomodify the data, but the system needs to be able to detect modifi-
cations and prevent unauthorized changes.

Revocation

T.25 Revocation requests may not be processed in a timely manner, allowing
unauthorized access to resources [86].

Revocation usually has a time delay, as the revocation request needs to
be processed by the identity provider. This delay is a potential threat, as
any revoked identity is still validuntil the revocation request is processed,
and there is usually a reason behind the revocation.

T.26 Employees or contractors with access to the wallet could revoke digital
identities without proper authorization, resulting in the denial of legiti-
mate user access [8].

The revocation process needs to be secure, as any unauthorized revoca-
tion could lead to the denial of legitimate user access. Employees or con-
tractors with access to the wallet are a potential threat, as they can po-
tentially revoke digital identities without proper authorization.

Ensure trust

T.27 If the mobile identity wallet fails to provide adequate security measures,
users may lose trust in the identity provider, leading to decreased usage
and adoption of the digital identity service [59, 79].

The usage of a digital identity system is directly linked to the trust in the
system, and if the system fails to provide adequate security measures,
users might lose trust in the system. This includes the security of the
wallet, the security of the overall system, and the security of the identity
provider.

Chapter 4

Security Measures in Android

This chapter will delve into Android’s security measures, encompassing fea-
tures integrated into the operating system as well as those available for incor-
poration within apps. These measures aim to safeguard user data and privacy
effectively.

4.1 Tapjacking / UI-Redressing

A user interface element on Android can theoretically be layered on top of an-
other element, which can be used to trick the user into clicking on elements in
ways that are not intended by app developers or users. This is called tapjacking.
Tapjackinghasbeenan issueonmany frontendplatforms, andhasbeenused to
trick users into clicking on ads, installingmalware, or even giving permissions
to apps. Android classifies multiple types of tapjacking attack vectors, which
are described in the following sections [32].

4.1.1 Full Occlusion

A full occlusion attack is when a malicious app overlays a transparent button
on top of a legitimate button, which can be used to trick the user into clicking
on the malicious button (see figure 4.1). This attack vector is mitigated by An-
droid by setting the android:filterTouchesWhenObscured attribute to true, which
prevents the malicious app from receiving touch events when the legitimate
button is being touched.

Figure 4.1: A full occlusion attack. The malicious app overlays a transparent
button on top of a legitimate button, which can be used to trick the
user into clicking on the malicious button (Source: [32], licensed
under CC BY 2.5)

23

https://creativecommons.org/licenses/by/2.5/

4 Security Measures in Android 24

Figure 4.2: A partial occlusion attack. The malicious app overlays fake infor-
mation over a legitimate interface (Source: [32], licensed under CC
BY 2.5)

On Android 12, API 31, and higher this behavior is enforced by default, except
for System Alert Windows and window animations, where only touches from
layerswithopacitygreater than0.8areblocked, as thismightnegatively impact
the user experience.

4.1.2 Partial Occlusion

In partial occlusion attacks only parts of an interface are covered by amalicious
app, which can be used to trick the user into clicking on/submitting informa-
tion to fields they did not intend to (see figure 4.2).

A developer can mitigate this attack vector by manually ignoring touch events
that have the FLAG_WINDOW_IS_PARTIALLY_OBSCURED flag set.

4.1.3 Custom Toasts

A Toast message is a small pop-up that appears on the screen for a short pe-
riod of time, typically to display a message to the user. On Android API 29 and
lower it was possible to create a customToastmessage, set its appearancewith
Toast.setView() and display it on top of other apps while the app itself was run-
ning in the background.

4.1.4 Notification Bubbles

Even though these types of interface elements overlay other apps, they are not
considered to be a tapjacking attack vector, as they are integrated with the An-
droid notification system, together with its chat features. They might overlay
other apps, and even overlay permission request dialogs, but they are in their
own little sandbox, unable to influence or get information from anything out-
side their sandbox, not even their own absolute coordinates. The only way the
process in a bubble can interactwith the rest of the system is through shortcuts
the parent app provides.

https://creativecommons.org/licenses/by/2.5/
https://creativecommons.org/licenses/by/2.5/

4 Security Measures in Android 25

4.1.5 SystemAlertWindows

System Alert Windows are a special type of window that can be displayed on
top of other apps. This was used by apps like Facebook Messenger to dis-
play chat heads, which were small bubbles that could be used to interact
with the chat without having to open the app. Apps have to request the SYS-
TEM_ALERT_WINDOW permission to be able to display System Alert Windows,
which from Android 6.0 (API 23) onwards was granted by default on apps that
were installed from the Play Store, but had to be grantedmanually for apps that
were installed from other sources.

4.1.6 Cross-Application Embedding

Since Android API 33 it is possible to embed an Activity from one app into an-
other app, to allow for amore seamless user experience on devices withmulti-
ple or larger screens. This feature has to be explicitly enabled by the developer,
and the developer can also specify which apps are allowed to embed their ac-
tivities by specifying the android:knownActivityEmbeddingCerts attribute in the
<activity> tag in the manifest file.

There is also the possibility to set android:allowUntrustedActivityEmbedding to
true, which allows any app to embed the activity, but this is an obvious security
risk, and should only be used if the developer is sure that the activity does not
contain any sensitive information.

The Android Jetpack library also provides the ActivityEmbeddingCon-
troller#isActivityEmbedded(android.app.Activity) method, which can be used
to check if an activity is being embedded by another app.

The security measures are in place to prevent clickjacking and other UI-
redressing attacks by ensuring that only trusted hosts can embed and con-
trol the presentation of activities, thereby protecting sensitive information, UI
controls, and input fields frommalicious misuse.

4.2 Sandboxing

Android application sandboxes are protected on a Linux kernel level, where
each app has its own user, with its own UID, and runs in its own process.

These features underwent gradual hardening over Android version updates by
implementing more SELinux policies, by limiting the filesystem and the pro-
cess permissions, and by limiting the access to the underlying system, likewith
syscalls.

The following sections describe the most important changes to the Android
sandboxing system up to the time of writing. The changes are paraphrased
from the Android Source Docs, and are grouped by API level [14].

4.2.1 Android 5.0 - API 21

SELinux enforcesmandatory access control (MAC) to separate the system from
apps, but all third-party apps run within the same SELinux context, so inter-
app isolation is mainly achieved through UID-based DAC.

4 Security Measures in Android 26

4.2.2 Android 6.0 - API 23

The SELinux sandbox was expanded to separate apps based on physical user
boundaries. Additionally, Android implemented safer default settings for app
data by changing the default DACpermissions on an app’s homedirectory from
751 (owner: read, write, execute; group: read, execute; others: execute) to 700
(owner: read, write, execute; group: no permissions; others: no permissions)
for apps with a targetSdkVersion of 24 or higher. This improved the security of
private app data, although apps could still choose to override these defaults.

4.2.3 Android 8.0 - API 26

A seccomp-bpf [136] filter was implemented for all apps, which restricted the
number of syscalls that apps could use, thus enhancing the security at the app/
kernel boundary.

4.2.4 Android 9.0 - API 28

Apps that do not have privileged access and have a targetSdkVersion of 28
or higher must operate within their own SELinux sandboxes, which provide
mandatory access control (MAC) on an app-by-app basis. This enhances app
isolation, prevents the alteration of secure defaults, and most importantly,
prevents apps frommaking their data globally accessible.

4.2.5 Android 10.0 - API 29

Apps have restricted access to the filesystem and cannot directly access
certain paths, such as /sdcard/DCIM. However, they do have full access
to paths specific to their own package, as provided by methods like Con-
text.getExternalFilesDir().

4.3 KeyStore System

In Android, key material should never enter the app process. During crypto-
graphic operations in an Android app, the plaintext and messages are trans-
mitted to a system process responsible for executing the cryptographic proce-
dures. This process can evenbe supported by specifichardware like a physically
isolated TEE module. On a somewhat current phone it can be safely assumed a
trusted environment with hardware support is existent, but it can be checked
with the method KeyInfo.isInsideSecurityHardware() [10].

Again, the following sections describe the most important changes to the An-
droid sandboxing system up to the time of writing. The changes are para-
phrased from the Android Source Docs, and are grouped by API level [10].

4.3.1 Android 4.0 - API 14

The KeyStore system was introduced in Android 4.0 (API level 14) and is based
on the Java KeyStore API.

4 Security Measures in Android 27

4.3.2 Android 4.3 - API 18

TheKeyStore systemwasenhanced to supporthardware-backedkeysusing the
KeyStore provider.

4.3.3 Android 7.0 - API 24

Since there was no way to check if a key was hardware-backed, key attestation
(section 4.11.5)was introduced. This allows remote servers to verify the state of
the key material.

4.3.4 Android 10 - API 29

The KeyInfo class now provides information about the security level of the key,
such as if it is hardware-backed, and if so, if it is StrongBox backed.

4.4 Cryptography

Android provides a standard Java Cryptography Architecture implementation,
which is based on the Bouncy Castle library [15]. There is hardware support for
the following cryptographic objects: Ciphers, Message Digests, Message Au-
thentication Codes (MAC) and Signature.

4.5 Biometrics

The following sections are based on the Android developer training materials
for biometric authentication [28].

4.5.1 APIs

android.hardware:FingerprintManager

The FingerprintManager was the first API to be introduced to support generic
biometric authentication. It was introduced in Android 6.0 (API level 23) and
was deprecated in Android 9.0 (API level 28).
It enabled the authentication against the KeyStore system, and similar to the
moremodern APIs, you could specify a CryptoObject, whichwould be unlocked
if the authentication was successful. The biggest drawback of this API was that
it only supported fingerprint authentication, and developers had to implement
their own user interface.

android.hardware.biometrics:BiometricPrompt

To address the drawbacks of the FingerprintManager, the BiometricPrompt
was introduced inAndroid9.0 (API level 28). It is a system-provideddialog that
prompts the user to authenticate using biometric authentication. The OEM is
able to customize the dialog to support different biometricmodalities, like fin-
gerprint, iris, or face, and to better incorporate in-display fingerprint sensors.

4 Security Measures in Android 28

Figure 4.3: How the different fingerprint APIs are related (Source: [17], li-
censed under CC BY 4.0)

androidx.biometric:BiometricManager

The androidx.biometric library was introduced in Android 10.0 (API level 29)
and provides a single API to authenticate a user with biometrics. It is a wrap-
per around the existing biometric authentication APIs, and provides a simple
interface to authenticate a user with biometrics [55]. It also provides a way
to check if the device supports biometric authentication, and if so, what type
of biometric authentication. For apps that support Android 10.0 (API level 29)
and above, the androidx.biometric library uses android.hardware.biometrics.
For apps that support API 28 to API 23, the androidx.biometric library uses an-
droid.hardware.FingerprintManager, and for apps on API 22 and 21 it uses the
Confirm Credential API, which is a system-provided dialog that prompts the
user to authenticate using a device credential (PIN, pattern, or password).

These different implementations shouldn’t matter to a developer, as a prop-
erly implemented app authenticates the credential with the KeyStore system,
which is the same for all APIs (seefigure4.3). Similar to this, the accesspermis-
sions tohardware-backedkeysare also the same for all APIs,whichmeanseven
though a device without biometric sensors might support Confirm Credential,
the hardware-backed keys can never show to be unlocked by biometrics.

4.5.2 Usage

Themanagement class typically requires a PromptInfo parameter, andoption-
ally a CryptoObject parameter, which undergoes authentication. The Prompt-
Info contains information about the prompt, such as the displayed text and a
callback function to be executed once the user has interacted with the prompt.
The CryptoObject can be accessed from the callback function, where it is un-
locked if the biometric prompt meets the cryptographic key requirements.
These key requirements are set during key generation, and can be viewed in
the key attestation certificate, which can be retrieved with KeyAttestation.

4.5.3 Security

To ensure compatibility with Android, device implementations must adhere
to the Android Compatibility Definition Document (CDD) [9], which evaluates

https://creativecommons.org/licenses/by/4.0/

4 Security Measures in Android 29

biometric security through assessments of architectural security and spoofa-
bility [21]. Themetrics used, including Spoof Acceptance Rate (SAR), Imposter
Acceptance Rate (IAR), and False Acceptance Rate (FAR), help classify biomet-
ric implementations into three classes (Class 3, Class 2, and Class 1) based on
their security performance [21].

4.6 Databases

4.6.1 android.database.sqlite

This is the standard Android database API, which is based on the SQLite
database engine [26]. The versions used in the Android system are from 3.4.0
(API 1), released 2007-06-18 [132], currently up to 3.32.2 (API 31), released
2020-06-04 [131]. The versioning is usually the same across devices in the
same Android version, butmanufactures can choose to include a different ver-
sion of SQLite in their shipped OS.

4.6.2 androidx.room

TheRoomPersistenceLibrary is awrapper around the standardSQLiteAPI [25].
It provides compile-time checks for SQL statements, generates boilerplate
code for common database operations and features standardized support for
database migrations. It uses

DAOs to access the database, which are annotated with SQL statements, for
CRUD operations,

Data entities to represent tables in the database, which are annotated with
the table name and column names, and

Database classes to represent the database, which are annotated with the
list of entities and the database version.

4.7 Identity Credential API

To aid the development of apps that use identity credentials Google is devel-
oping an API that allows apps to interact with identity credentials securely. In
August 2020 the first alpha version of the Jetpack Identity Credential API was
released [20].

4.8 Network

In an Android app, network communication is usually done using the URLCon-
nection class, which is a standard Java class. This class wraps around different
protocols, such asHTTP,HTTPS, FTP, and can be used to send and receive data.
This way the app developer doesn’t have to implement any part of the protocol
itself, but can use the standard Java API to communicate with a server.

The Android API implements Certificate Pinning by default for all HTTPS con-
nections [27]. Evenmanually addedcertificates arenot trustedby the systemby

4 Security Measures in Android 30

default,whichmeans the apphas to implement its ownTrustManager to trust a
non-standard certificate. This makes it harder for an attacker to intercept the
communication between the app and the server, as the attacker has to either
compromise the server or the device to be able to intercept the communication,
and can’t just use a self-signed certificate that is installed as a user-certificate
in the system.

4.9 Permissions

Permissions expand the functionality that an app is allowed through the An-
droid sandbox [22]. In general, a default Android app can only do computa-
tions, draw on the screen, and read and write to its own private storage. To
extend the capabilities of an app, it can request permissions to access certain
resources, such as the network, sensors or elements of the OS. Some permis-
sions are granted implicitly, some are granted explicitly by the user, and some
OS and device functionality is locked away from apps completely.

4.9.1 Normal Permissions

Normal permissions are permissions that, according to the Android develop-
ment team, don’t pose a risk to the user’s privacy or the device’s operation.
They are automatically granted to the app when it requests them, so the user
doesn’t have to explicitly grant them.

4.9.2 Signature Permissions

Signature permissions are permissions that are only granted to apps that are
signedwith the same certificate as the app or the Android system that declared
the permission.

4.9.3 Dangerous Permissions

Dangerous permissions, or Runtime permissions, are permissions that can
pose a risk to the user’s privacy or the device’s operation. Before an app wants
to use functionality that requires a dangerous permission, it has to request the
permission from the user, which is done via the Android permission prompt,
which the app can call, but not influence in any way. The user can then choose
to grant or deny the permission, which means the app has to account for the
permission being denied.

4.9.4 Special Permissions

Special permissions are permissions that are granted by the user, but can only
be granted through the system settings, and not through the Android permis-
sion prompt.

4 Security Measures in Android 31

4.9.5 Recent Changes

The Android permission system has evolved quite a lot over the years, with
the goal of giving users more control over their data and privacy [5]. This also
meant that thepermission systemhasbecomemore complex,which can lead to
users not understanding the permission system and just blindly granting per-
missions to apps.

Since Android 11, the user can now choose to only grant the permission for the
current session for certain permissions related to location, microphone and
camera. Additionally, if the user hasn’t used an app for a fewmonths, the sys-
temwill automatically reset all sensitive runtimepermissions for that app [23].

In Android 12, a privacy dashboard was added to Android, which gives the user
an overview of which apps have accessed which permissions, when, and even
gives developers a possibility to show an app specific rationale screen when a
user wants to knowmore about the need for certain permissions [16]. Android
12 also addedmicrophone and camera indicators, which show the userwhen an
app is using the microphone or camera [16].

4.10 App Signing

For an app to be installed on an Android device, it has to be signed with a cer-
tificate by the developer [30].

Since an Android app is stored as an APK file, which is based on the JAR file
format, which in turn is a ZIP archive, an app can be unzipped, and the files can
be modified. To prevent this, the APK file is signed with a certificate, which is
then verified by the Android system when the app is installed (see figure 4.4).
This certificate is used to identify the developer of the app, and to verify that
the app hasn’t been tampered with.

4.10.1 APK Signature Scheme v1

The APK Signing Scheme v1 is based on the JAR Signing Scheme [112], which
is used to sign JAR files [113]. The jarsigner tool [111] is used to sign each file in
the APK individually, and then the signature is stored in theMETA-INF folder
of the APK.

4.10.2 APK Signature Scheme v2

The APK Signing Scheme v2 adds a signature block in front of the ZIP central
directory, which contains signed digest of digests of 1MB chunks of the ZIP
archive and signatures for each signer (see figure 4.5). This removes some of
the flaws of v1, such as the fact that only indexed files were signed, and that all
contained files had to be uncompressed before verification [11].

4.10.3 APK Signature Scheme v3

This version is similar to v2, but it adds information on the target SDK version
of the app and a proof-of-rotation structure [12].

4 Security Measures in Android 32

Execute APK

No

Yes
Does v4 signature file

exist?

Install APK

No

Yes
Does it have v3

signature in signing
block?

No

Yes
Does it have v2

signature in signing
block?

Yes

No

Verifiy against v4
scheme and confirm it

matches v2/v3

Yes

No

Does the APK
verify against v3
signature rules?

No

Does the APK
verify against v1
signature rules?

No

Does the APK
verify against v2
signature rules?

Reject APK

Yes

Yes

Reject APK

Figure 4.4: APK Signature Verification Mechanism (Source: [30])

4 Security Measures in Android 33

Figure 4.5: How signingwith APK Signing Scheme v2 creates the digest for the
ZIP archive (Source: [11], licensed under CC BY 4.0)

This proof-of-rotation can be used to prove that the signing key of the app has
been rotated,which can be used tomigrate to a new signing keywithout having
to re-sign all APKs that have been signed with the old key.

4.10.4 APK Signature Scheme v4

The v4 signature scheme also generates hashes over the ZIP archive, but in-
stead of storing them in the APK, it stores them in a separate file [13]. For the
generation of the hashes, the fs-verity merkle tree algorithm is used, which
gives a standard way to verify the integrity of files on a block device [135].

The v4 signature scheme requires a v2 or v3 signature to be present in the APK,
so it can’t be used on its own.

4.10.5 APK Signature Issues and Vulnerabilities

The Janus vulnerability (CVE-2017-13156)was a huge issuewith the APK Sign-
ing Scheme v1, where an attacker could appendmalicious code to the end of the
APK, which would be executed by the system, but not be detected by the signa-
ture verification [77]. This is possible due to a combination of factors.

1. The APK Signing Scheme v1 signs the files in a ZIP folder, but there could be
arbitrarily large gaps between the files, which are not signed.
This situation is even worse when you consider that such a gap could also
be in the beginning of the APK, which would allow an attacker to prepend
data to the APK.

2. TheAndroid runtime can execute bothDEX andAPKfiles, and it determines
the type of the file based on the magic bytes at the beginning of the file.

This allows for a malicious actor to prepend a malicious DEX file to the APK,
whichwould still be signed by the original author of the app, but would be exe-
cutedby the system.The vulnerability is not present in theAPKSigningScheme
v2, since the signature digest is computed over the entirety of the APK data.

Another issue with multiple versions of increasing security is rollback attacks,
where an attacker tries to trick the system into using amore unsafe (older) ver-
sion of signatures,which canbe used to exploit vulnerabilities in older versions
of the signature schemes. This is mitigated by including the preferred version
of the signature scheme in the older version of signatures.

https://creativecommons.org/licenses/by/4.0/

4 Security Measures in Android 34

4.11 Device Protection

The topic of device protection is very broad, and includes many different se-
curity measures. Since an Android phone is based on a Linux kernel, it inherits
many of the security features of Linux. Usually, modern devices also feature a
Trusted Execution Environment (TEE), which runs its own operating system,
potentially using a separate processor, and is used to store sensitive data, such
as cryptographic keys, and to perform cryptographic operations.

4.11.1 SELinux

SELinux is a Linux kernel security module that provides amechanism for sup-
porting access control security policies. It is used to enforce the principle of
least privilege, by restricting the access of processes to resources, such as files,
devices, networks, etc. In a standard Android device, SELinux is set to enforc-
ingmode, whichmeans that all access requests are denied by default, and only
allowed if they are explicitly allowed by the policy.

4.11.2 Verified Boot

Verified boot is a security feature that ensures that the device boots using only
trusted software. This is done by verifying the signature of the bootloader, ker-
nel, and the system partition.

There are 5 different states that the device can be in:

Green: The device is locked, and the OS is verified using a root-of-trust
from the OEM.

Yellow: The device is locked, and the OS is verified using a custom root-of-
trust that is also set in the device by a user.

Orange: The device is unlocked, and any OS can be booted.

Red (eio): The device is unlocked, and the OS seems to be corrupted accord-
ing to dm-verity [19].

Red (no OS): The device is unlocked, and there was no bootable OS found.

These states can be attested by the TEE (see section 4.11.5), and this way a re-
mote server can somewhat reliably determine the state of a device.

4.11.3 File-Based Encryption/Full-Disk Encryption

File-based encryption is a feature that was introduced in Android 7.0 (API level
24) [18]. Android encrypts the data partition using a key that is stored in the
TEE, and the key is encrypted using a key derived from the user’s lock screen
PIN, pattern, or password. This means that the data partition can only be de-
crypted if the user enters their PIN, pattern, or password, which is verified by
the TEE.

4 Security Measures in Android 35

4.11.4 Operating SystemModifications

OEMs usually modify the Android operating system to add their own features
and to differentiate their products from the competition. Thesemodifications,
for the most part, don’t affect the security of the device.

There are, however, some groups of developers that providemodified versions
ofAndroid, for thepurposeof adding features that arenot present in theofficial
OEMversionofAndroid ona certaindevice. ThesemodifiedversionsofAndroid
are called custom ROMs, and they are usually based on AOSP.

Custom ROMs usually require the bootloader to be unlocked, which allows the
user to boot a non-OEM signed OS image. They can be used to bypass security
measures, and the OEM can’t prevent them from doing so. This is why it is im-
portant to have security measures that are not affected by the OS.

There are some parts of a device that are usually not designed to bemodifiable,
even when a bootloader is unlocked, specifically TEEs. This means that even
if the OS is modified, the TEE can still be used to store sensitive data, and to
perform cryptographic operations.

A whole different topic is the security of custom ROMs themselves. Since they
aremostly developed by volunteers, there is no guarantee that they are secure,
and that the code is audited. Some groups try to provide additional code secu-
rity, for example strict coding guidelines, and code reviews, but in the end, it
is up to the user to decide if they trust the authors of a custom ROM. A similar
argument could be made for the official OEM versions of Android, especially
since they are usually closed-source.

4.11.5 Key Attestation

An Android device can, using the aforementioned cryptographic li-
braries (see section 4.4 and section 4.5), generate cryptographic keys, and
store them in the TEE. This key material can then be used to perform cryp-
tographic operations, such as encrypting data, or signing messages. The TEE
can also be used to attest the key material, which means that it can generate a
certificate that contains information about the key, such as the key’s purpose,
its protection level and custom attestation challenge data to guarantee that
no replay attacks are possible. This certificate is the last in a chain of certifi-
cates, which starts with the root certificate, which is stored in and cannot be
extracted from the TEE.

This way the TEE can be used to attest the state of the device, and to prove that
thedevice is in a certain state, suchas thebootloader being locked, or thedevice
being encrypted. It can also beused to attest the state of the keymaterial, and to
prove that thekeymaterial is stored in theTEE, andwhether it is only accessible
after the user has authenticated themselves with a certain biometric modality,
PIN, pattern, or password.

4.11.6 Root Detection

The term root refers to the user with the highest level of privileges on a Linux
system. A rooted device is a device that has been modified to allow the user to
gain root privileges. Rooted devices provide userswith administrative access to
their devices, allowing them tomodify the operating system and use otherwise

4 Security Measures in Android 36

restricted features. This is often used to bypass security measures, such as the
ones described in this document.

Detecting if a device is rooted is not a trivial task, since there aremanydifferent
ways to root a device, and they all have different effects on the system.

The modern way, as implemented by Magisk [90] to root a device is to modify
the boot image, which is the first image that is executed by the bootloader, and
edit the zygote process, which is the parent process of all Android applications.
This way the necessary libraries are loaded into the zygote process, and all ap-
plications that are started from that process will have root access, without the
need to modify the system partition. Magisk also provides a way to deny root
access to certain applications, where it cleans the environment of the applica-
tion before it is started. Such a setup alone makes it tough to detect if a device
is rooted, since no additional libraries are in the environment and the zygote
process looks completely normal.

Additionally, since the user has root access, they can modify an app dynami-
cally, by injecting code into the process, and thus bypassing any root detection
implemented in the app. This leads to the conclusion that it is not possible to
reliably detect if a device is rooted, and that it is not possible to prevent a user
from using a rooted device to bypass security measures [47, 64].

4.11.7 Google Security APIs

Google provides a set of APIs to detect certain features of the device, and to
perform certain security-related operations. These APIs are not part of the An-
droid Open Source Project, and are only available on devices that have Google
Play Services installed.

SafetyNet Attestation API

The SafetyNet API consists of multiple parts, such as:

SafetyNet Safe Browsing API: Allows the app to check if a URL is safe to
open.

SafetyNet reCAPTCHA API: Allows the app to use reCAPTCHA to verify that
the user is human.

SafetyNet Verify Apps API: Allows the app to check if the device is protected
by Google Play Protect.

SafetyNet Attestation API: Allows the app to check if the device integrity
has been compromised.

In our case, the SafetyNet Attestation API is the most interesting one, since it
allows the app to check if the device’s integrity has been compromised. This is
done by evaluating the runtime environment of the device and certain device
identifiers, sending them to the Google servers, together with a nonce, where
they are evaluated, and a response is sent back to the device.

This process can be somewhat easily tricked, since good root hiding techniques
can be used to hide the fact that the device is rooted, and the device identifiers
can be spoofed. This means that the SafetyNet Attestation API can’t be used to
reliably detect if a device is rooted.

4 Security Measures in Android 37

Play Integrity API

The Play Integrity API is the successor of the SafetyNet Attestation API, and is
set to replace it completely by 2025. This API, similar to the SafetyNet Attes-
tation API, also transmits an attested KeyStore certificate chain to the Google
servers, which can be used to verify the boot state of the device.

Thismeans that, as long as the TEE displays the correct boot state (which is not
always the case [127]), thePlay IntegrityAPI canbeused to (somewhat) reliably
detect if a device could be modified to bypass security measures, but there are
still no absolute guarantees.

4.12 Third-Party Libraries

4.12.1 SQLCipher

SQLCipher1 is awidely recognizedopen-source forkof SQLite, providing trans-
parent 256-bit AES encryption of database files [31]. On Android, it can be used
to secure Room databases or SQLite databases. When integrated with Room
Databases, SQLCipher adds a layer of security by encrypting the database con-
tent. This is particularly useful when storing sensitive data, as it ensures that
even if the database file is somehow accessed, the content remains secure and
unreadable without the encryption key. SQLCipher performs encryption at a
page level, meaning that data is encrypted before it’s written to disk and de-
crypted when read into memory. The encryption key is required to initialize
the database and can be changed without losing data. This makes SQLCipher a
valuable tool for enhancing data security in Android applications.

4.12.2 Google Tink

Google Tink2 is a multi-platform cryptographic library that aims to provide
unified cryptographic APIs for developers. It is designed to implement key
management using system-specific hardware keystores, enhancing the secu-
rityof cryptographicoperations. In the contextofAndroid,Tink integrateswith
the Android KeyStore System through the AndroidKeysetManager class. This
class handles the storage of the keyset in a SharedPreferences file and uses the
Android KeyStore System to secure the master key. However, a notable con-
cern with Google Tink is its deviation from the base functionality provided by
Android, particularly its inability to require user authentication for key usage
by default, and instead leaving this responsibility to the developer again. This
could potentially limit its applicability in scenarios where user authentication
is a crucial aspect of the security protocol.

4.12.3 Themis

Themis3, developed by Cossack Labs Limited, is a high-level cryptographic
services library designed to provide secure storage and transport of data across
multiple platforms. It is designed to address 90% of typical data protection

1https://www.zetetic.net/sqlcipher
2https://developers.google.com/tink
3https://www.cossacklabs.com/themis

https://www.zetetic.net/sqlcipher
https://developers.google.com/tink
https://www.cossacklabs.com/themis

4 Security Measures in Android 38

use cases, making it a versatile tool for app developers. Themis uses libcrypto
from a variety of open source providers for its cryptographic operations, en-
suring robust and secure data encryption. However, it leaves the responsibil-
ity of key management to the developer, allowing for greater flexibility and
control. Themis is capable of encrypting stored secrets in apps and backends,
supporting searchable encryption,maintaining real-time secure sessions, and
even comparing secrets between parties without revealing them using zero-
knowledge proofs.

Chapter 5

Security Measure Evaluation Criteria

The evaluation criteria are used to assess the security measures implemented
in an app. The criteria are designed to help identify the strengths and weak-
nesses of an app’s securitymeasures, and to provide a structuredway to objec-
tively evaluate the app’s security posture. The criteria are divided into different
levels, with each level representing a different degree of security, which allows
for easy and compact classification. The levels are based on the iterative evalu-
ation process and roughly show the assumed capabilities of an attacker needed
to bypass the security measures, from attackers with no special capabilities to
nation-state actors. This, of course, does not include vulnerabilities to the se-
curity measures themselves, as these are not predictable and can be found at
any level.

5.1 Storage Protection

These criteria are used to evaluate the protection of the storage of sensitive
data. Sensitive data can be anything from a user’s biometric, financial or other
private data. It can also include login credentials or private API tokens that fur-
ther unlock secrets a user might want to protect. The levels are based on the
time and effort required for an attacker to access the data, assuming other se-
curity measures have already failed.

Level 0 - Unencrypted storage of sensitive data in publicly available
folders

In this level, sensitive data is stored in publicly available folders that are acces-
sible for every app on a device without any encryption.

Level 1 - Unencrypted storage of sensitive data or decryption keys in
program private folders

In level 1, sensitivedataordecryptionkeysare stored inprogramprivate folders
without any encryption.While this offers some protection compared to level 0,
it is still vulnerable to attacksbymalwareormalicious apps that cangain access
to these folders.

These risks are somewhatmitigated by the Android OS, but especially onmod-
ified devices, these mitigations are easily circumvented.

39

5 Security Measure Evaluation Criteria 40

Level 2 - Encrypted storage of sensitive data in publicly available or
program private folders

In level 2, the focus is on ensuring that sensitive data is stored securely in both
publicly available andprogramprivate folders by encrypting thedata. This adds
an extra layer of protection to the data, making it more difficult to access it as
an unauthorized party. It is important to note that while encryption can help
protect data, it’s not foolproof, and relies heavily on the integrity of the un-
derlying KeyStore and encryption algorithms used.

Level 3 - Biometrically encrypted storage of sensitive data in
publicly available or program private folders

In level 3, sensitive data is biometrically encrypted, whichmeans that the data
is not only encrypted but also requires biometric authentication to access it.
This provides a higher level of security compared to level 2 as biometric au-
thentication ensures that only authorized users can access the data, and user
presence is required to decrypt the data. However, it is important to note that
biometric authentication methods are not foolproof and can be bypassed.

Level 4 - Distributed, encrypted storage of sensitive data in
physically different machines

In level 4, sensitive data is stored on physically different machines in a dis-
tributedmanner. This provides thehighest level of protection for sensitive data
as it ensures that even if onemachine is compromised, the sensitive data is still
safe on the other machines. The data is also encrypted to ensure that even if
a machine is compromised, the sensitive data cannot be accessed without the
encryption key.

Distributed, encrypted storage is particularly useful for organizations that deal
with highly sensitive data, such as financial institutions, healthcare organiza-
tions, and government agencies.

5.2 Network Communication Protection

Level 0 - Plain text

At this level, network communication is done in plain text, which means that
the data transmitted over the network is not encrypted or scrambled. This
makes it straightforward for an attacker to intercept and view the data being
transmitted.

Level 1 - Bad encryption - e.g. key publicly available

Level 1 is an improvement over level 0 in that it introduces encryption. How-
ever, the encryptionused isweak in anyway, e.g.when the key is publicly avail-
able.

Thismakes it relatively easy for an attacker to intercept and view the encrypted
data.

5 Security Measure Evaluation Criteria 41

Level 2 - Encryption using state-of-the-art methods

In level 2, network communication is encrypted using state-of-the-art en-
cryption methods, which are designed to be challenging to crack. This means
that even if an attacker intercepts the data being transmitted, they will not be
able to make sense of it without the encryption key.

Level 3 - End-to-end encryption using state-of-the-art methods

End-to-end encryption is a communication system where data is encrypted
on one device and decrypted on another, so that the data is only readable by
the sender and the intended recipient. Level 3 introduces end-to-end encryp-
tion using state-of-the-art encryptionmethods, which provides an additional
layer of security. This is different from level 2, where the data is encrypted dur-
ing transmission, but could be decrypted at the server.

Extra

Since the next levels are not necessarily better than the previous ones, they are
listed as extra levels.

VPN - Usage of a VPN

Using a Virtual Private Network (VPN) is a way to add a layer of security to net-
work communication. It can provide anonymity and help to protect against at-
tacks. However, it’s important to note that using a VPN does not necessarily
improve security, and can sometimes create new vulnerabilities.

Offline - No network communication

The only 100% secure network connection is no connection. By disconnecting
from the internet andother networks, data canbe kept completely secure. This,
however, is obviously only possible in apps that do not require a network con-
nection.

5.3 User Interface Protection

Level 0 - No protection - can be embedded, used without user
interaction

At this level, the app can behave like a library to other apps; it can be called and
used without any user interface and is not confined in its sandbox.

This could mean that methods can be invoked from other apps, the app reacts
to unverified deep links, or it exposes data using IPCmechanisms.

5 Security Measure Evaluation Criteria 42

Level 1 - Stand alone - uses OSmethods to be a standalone program
- interaction without user presence possible

In level 1, the app is a standalone program that uses the operating system’s
methods to run independently of other programs. Thismeans that the user in-
terface can be used without the presence of an authenticated user, but it does
not allow for any unauthorized actions to be performed from outside the app
sandbox.

Level 2 - Uses confirmation of user presence

Level 2 introduces a higher level of protection for the user interface by requir-
ing confirmation of user presence. This means that the user must be actively
present and interact with the user interface to perform any actions. This can be
achieved through variousmeans, such as entering a password, using biometric
authentication, or responding to a prompt.

However, it’s important to note that this does not provide complete protection
and should be combined with other security measures.

5.4 Permissions

Users should carefully review the permissions requested by an app before
granting them because a misbehaving app is only capable of performing ac-
tions that alignwith the permissions granted to it. It is irrelevant whether such
unwanted behavior stems from an attack or poor programming practices.

Level 0 - App wants ALL permissions possible

In level 0, an app requests all possible permissions, regardless of whether they
are necessary for the app’s functionality. This is a significant security risk, as it
can allow the app to access sensitive data or perform unwanted actions on the
device.

Level 1 - App wantsmore permissions than needed

In level 1, an app requests more permissions than are strictly necessary for its
functionality. While this may not be as extreme as level 0, it can still pose a
security risk.

Level 2 - App wantsmore permissions than needed for necessary
functionality

In level 2, an app requests some additional permissions beyond those strictly
necessary for its functionality. This may be done to enable additional features
or improve the user experience. However, these additional permissions should
be carefully reviewed to ensure that they do not pose a security risk.

5 Security Measure Evaluation Criteria 43

Level 3 - App wants only those permissions needed for necessary
functionality

In level 3, anapp requests only thepermissions that are strictlynecessary for its
functionality. This is themost secure approach to app permissions, as it mini-
mizes the potential for security risks.

5.5 Update Policy

Level 0 - No updates/patches, even after publicized security issues

In level 0, an application does not get updated or patched, even after security
issues arepublicized.This is a significant security risk.Users shouldbe cautious
when using such applications.

There is also the chance that development for this applicationhasfinished, and
there are no further updates possible or necessary, but in such cases the same
caution should be applied by users, as there are constantly new threats being
found.

The only real examples for apps that don’t need updates would be those that
display static information that is not going to change and not interacting with
the user, like an app that displays the Declaration of Independence of the USA,
and nothing else.

Level 1 - Irregular/incomplete updates/patches

In level 1, updates and patches are developed for the application, but they are
irregular or incomplete. This means that the security of the application is im-
proved periodically, but not necessarily in a timely or comprehensive manner.

Level 2 - Regular updates/patches

In level 2, updates and patches are regularly released for the application. This
means that the security of the application is continuously improved, and any
known vulnerabilities are addressed in a timely and comprehensive manner.

5.6 Root Detection

Extra - Additional functionality on rooted devices

In this extra level, additional functionality is provided to userswhohave rooted
their devices. This is sometimes used as a powerful way to import data from
other apps, like backups, or to provide additional features that are not possible
on non-rooted devices. We need to declare this as an extra level, as it is not
necessarily better or worse than the other levels, and it can be combined with
some of the other levels.

5 Security Measure Evaluation Criteria 44

Level 1 - No apparent root detection

In level 1, there is no clear root detection implemented in the app. This means
that the app does not check or does not care if the device is rooted, and provides
the same functionality to all users, regardless of whether their device is rooted
or not.

Level 2 -Warning on rooted devices

At this level, the user gets notified that an app is aware of the root status of the
device. This could be an alert to the user, a notification banner or anything else
visibly notifying the user of the root status.

Thesemessagesusually contain some text on thepossible risks of using the app
on a rooted device, and disclaimers on the possible reduced stability due to the
modifications that had to be made to obtain that status.

Level 3 - No functionality on rooted devices

In level 3, the app checks if the device is rooted, and if so, denies access to the
app or at least certain features. This means that the app or those features can-
not be used on rooted devices, which helps to prevent potential security risks
associated with rooted devices.

However, this level of protectionmay not be foolproof, as there areways to by-
pass root detection and gain access to the app on rooted devices. Additionally,
thispracticeofdenyingaccess to rooteddevicesmayalsohaveunintendedcon-
sequences. The (usually) small percentage of users who have rooted their de-
viceswill beunable touse the app, and somemay resort to installingpotentially
dangerous software to bypass these checks.

5.7 Reproducibility

This criterion should answer whether a user can build their own version of the
app that is the same as the version provided in app stores. This is important
for ensuring the integrity and security of the app, as it allows users to verify
that the code in the apphasnot been tamperedwith ormodified. A reproducible
buildmeans that anyone can verify that the appwas built from the same source
code as the official app, providing greater confidence in the app’s security and
trustworthiness.

In our case,we are not looking to build a bit-by-bit identical copy, but a version
that behaves exactly the sameway as the official version. This leaves out things
like timestamps, build numbers, and other metadata that can be different be-
tween builds, and signing keys, which should not be available to the user.

5.8 Business Logic in Native Code

Here, we are looking at whether the app has parts of its business logic written
in native code. Having business logic written in native code can provide better
performance and security for the app. However, it also means that the code is

5 Security Measure Evaluation Criteria 45

more challenging to analyze. It can introduce additional security risks if the
code is not properly audited, if there are vulnerabilities in the native libraries
themselves or if the library developer itself is not trustworthy [4]. There are
also potential issues with memory management, as native code can introduce
memory leaks and other memory-related vulnerabilities. In this criterion, UI
code or auxiliary libraries are not considered business logic, but differentiating
them can be challenging, especially in closed-source apps.

Chapter 6

Test Methodology and Tools

An issue that we encountered was the fact that most published apps leave
little to no traces of their implementation details, especially when it comes
to libraries, because R8 [72], a compiler that can obfuscate and shrink Java
bytecode, is included in Android Studio [29]. This shrinking removes unused
code from libraries, and obfuscation renames classes, methods, and variables,
which makes determining libraries and their versions difficult. Our research
was aided by the fact that access to system APIs is usually not obfuscated, so
we could at least determine which Android APIs were used by an app.

Most of our testingwas done using static analysis, by decompiling theAPKfiles
of the wallets, and then analyzing the code.

6.1 Test Environment

The hardware used to test the wallets was a recent Laptop with an Intel Core
i7-8565U CPU, 16GB of RAM and a 512GB NVMe SSD, running an up-to-date
version of Ubuntu 22.04 LTS, together with 2 rooted Android smartphones, a
Xiaomi Redmi Note 7 (lavender), running the PixelExperience 13 ROM and a
Google Pixel 6a (bluejay), running the stock ROM, both on Android 13.

6.2 Toolchain

There are several tools thatweused to test thewallets, and to analyze their code
and behavior. Some of these tools provide redundant functionality and differ-
ent tools can produce different results.

6.2.1 Raccoon

Raccoon [119] is a tool that allows todownloadAPKfiles fromGooglePlayStore,
without the need to use the Google Play Store app. It uses a Google account to
authenticate with the Play Store API and then allows to download the APK files
of any app that is available in Play Store. This is useful for testing, as it allows
downloading themost recent APK files of the wallets, without having to install
them on the test devices, and without having to rely on 3rd party re-uploads.
The tool itself is open source and can be found on GitHub. There are several
issues with the tool, such as the fact that it does not work with 2FA enabled
Googleaccounts, and theauthor recommendsusingadedicatedGoogleaccount
for this purpose.

In our case, we used the tool to gather all the APK files of the wallets that we
tested.

46

6 Test Methodology and Tools 47

6.2.2 Apktool

Apktool [52] can be used to decompile APK files intomore understandable for-
mats, such as .smali for the compiled code, and it can also decompile the re-
sources, such as images, layouts, etc. into their original formats. If the files are
in the right configuration, it can also be used to recompile the APK files, which
is useful for testing, as it allows modifying the code and resources of the apps,
and then recompile them to test the changes.

6.2.3 Jadx

Jadx [129] can be used to decompile dex files into Java source code. It also has a
GUI that displays thedecompiled codenicely formatted, andallows for jumping
to the definition of a class or method, which is useful for navigating the code.

There is no easy way to recompile the code, so it is only useful for viewing the
code behind a program.

6.2.4 JD-GUI

JD-GUI [78] is similar to Jadx, but it can be used to decompile .class files into
Java source code, and view the result.

6.2.5 Java Class File Editor

The Java Class File Editor can be used to view and edit .class files. It gives a great
overview of the structure of the class files, and allows for byte-level under-
standing of the files.

Java Class File Editor [50] is an old tool, with its last release in 2004. Since it has
notbeenupdated fornewerversions, it doesnot correctlydecompilenewer Java
features.

6.2.6 dex2jar

dex2jar [122] is a collection of tools that can be used to convert dex files to
zipped class files, dex files to smali files, and the other way around.

6.2.7 MITM Proxy

Man in theMiddle Proxy [104] is a tool that can be used to intercept andmodify
network traffic. It works by setting up a middle point on a gateway device, and
then intercepting all traffic that goes through it. If the traffic is HTTPS, a user
needs to install a certificate on the device, that allows the proxy to decrypt the
traffic. This does not work with apps that use certificate pinning, as they will
refuse to connect to the proxy.

6 Test Methodology and Tools 48

6.2.8 Xposed

The Xposed Framework [125] allows hooking into the execution of an app and
to modify its behavior. It can be used to change the return value of a function,
force an error, or to modify the parameters of a function call. This is useful for
testing, as it allowsmodifying the behavior of an app, without having to mod-
ify the source code, and without having to recompile and re-sign the app. To
use it, however, the app needs to be installed on a rooted device, and a fitting
implementation of the Xposed Framework needs to be installed, which might
get complicated, depending on the Android version and the device. In our case,
LSposed [97] was used, which is an open source implementation of the Xposed
Framework, that works as a Magisk module [97].

6.2.9 apk.sh

apk.sh [35] is a tool that can be used to decompile APK files. It is a wrapper
around several other tools, such as Apktool, adb and jarsigner, and can be used
to decompile, modify and recompile APK files. The most interesting feature of
apk.sh is that it can be used to automatically collect application bundles from
a local device, decompile them into the format that Apktool uses, and then re-
compile them into a single APK file. This way, the gathering of APK files does
not involve unstable third-party Play Store scrapers, andmodifications to ap-
plication bundles are as easy as with regular APK files.

6.2.10 Mobile Security Framework (MobSF)

The Mobile Security Framework [105] is a tool that automatically decompiles
and scans APK files for security issues. It is open source and uses some of the
tools mentioned above to automatically decompile the APK files and then scan
them for potential security or privacy issues, report native libraries, and give
an overview of the permissions that the app requests. In our case, we used it
to do initial scans of the APK files. This helped us to quickly identify potential
issues, such as the use of insecure libraries, or the use of permissions that are
not necessary for the app to function. The integration of the tracker database
was also interesting, as it allowed us to quickly see if/which trackers were used
by thewallets. However, this informationwas omitted from the final report, as
it was not the focus of our research.

Chapter 7

Evaluation of ExistingWallets and
Data Storage Apps

This chapter is split into sections for different types of wallets and data storage
apps. Each section contains a table with the evaluation results of the apps in
that category. This division is made to make it easier to compare the apps in
the same category, as they usually have similar requirements and features.

7.1 Evaluated Apps

7.1.1 IDWallets

ID Wallets are apps that store digital identity documents, such as passports,
drivers’ licenses, or vaccination certificates. They are interesting to look at, as
the data they store is critical to users, has to be authentic, and the apps are ex-
pected to be secure, whilst being able to display the verifiable, authentic data to
third parties. They usually have to transmit a somewhat large amount of data,
sometimes in theMegabytes, as they have to transmit the document and cryp-
tographic proofs of its authenticity. Their implementation often depends on
underlying SDKs, especially for SSI related functionality. The evaluation shows
generally good results in this category (Table 7.1), with apps using secure net-
work connections, the Android KeyStore to protect their keys and confirmation
of user presence when the app is unlocked.

Learner Credential Wallet The Learner Credential Wallet (lcw.app) [57] is an
open-source application designed to store credentials in accordance with the
W3CVerifiable CredentialsDataModel [130]. According to thedevelopers, “The
wallet is based on the learner credentialwallet specification developed by theDigital
Credentials Consortium. The learner credential wallet specification is based on the
draft W3C Universal Wallet interoperability specification and the draft W3C Verifi-
able Credentials data model” [98].

This application leverages the React Native framework, enabling cross-
platform development and availability on both the Google Play Store and
the Apple App Store. It offers the ability to import and export these credentials
as JSON-LD files. Given its open-source nature, the application can be verifi-
ably built from source under specific conditions. However, auditing the native
code can be challenging due to the presence of 106 native libraries for each
architecture.

49

7 Evaluation of Existing Wallets and Data Storage Apps 50

Google Wallet Google Wallet (com.google.android.apps.walletnfcrel) [76] is
barely a freestanding app, as it uses theGoogle Play Services framework to pro-
vide its functionality. This makes it both interesting to look at, as it features
best practice implementations, but also hard to analyze, as most of the func-
tionality is not contained in the app itself. Interesting to note is that not all the
data is end-to-end encrypted, as some of the data is stored in theGoogle cloud.

The app uses Play Integrity to detect and block rooted devices.

Evernym Connect.Me Evernym Connect.Me (me.connect) [65] is written in
ReactNative anduses Blockchain technologies for SSI. It uses the Play Integrity
API to detect andblock rooted devices, and it uses theAndroidKeyStore to store
its keys.

Its identitywallet functionality is based on an SSImodel and usesmultiple dis-
tributed ledgers to store the data.

7.1.2 TicketWallets

Ticket Wallets are functionally similar to ID Wallets, but they store tickets in-
stead of identity documents. Tickets are usually not as problematic as identity
documents, but they are still expected to be authentic, and the apps are ex-
pected to be secure, whilst being able to display the verifiable, authentic data
to third parties.

A lot of the apps do not require additional confirmation of the user’s identity
when the app is unlocked. This is a security risk, as it allows any user who has
access to the device to access the data. However, in this category, the apps are
meant to provide quick access to the tickets, and the security risk is probably
acceptable for the convenience that it provides (Table 7.1).

WalletPasses | Passbook Wallet WalletPasses | Passbook Wallet (io.wallet-
passes.android) [133] is a simple ticketwallet application, implemented in Java,
that allows users to store andmanage their passes. Previously, the application
lacked any form of encryption and hadn’t received updates for several years.
However, recent versions have seen frequent updates, one of which notably
introduced the use of SQLCipher for secure data storage. This app requires a
large number of permissions, including access to the camera, location, inter-
net, the ability to read andwrite to external storage and the Google advertising
ID, which are not all necessary for its functionality.

Pass2U Wallet - digitize cards Pass2U Wallet - digitize cards (com.passesal-
liance.wallet) is another ticket wallet application [118], this time implemented
in Kotlin, that allows users to store and manage their passes. The only thing
that sets this appapart fromother ticketwallets is that it haspaid features, such
as theability to transferpassesbetweendevices. This appwants evenmoreper-
missions thanWalletPasses, including access to the camera, location, internet,
the ability to readandwrite to external storage, theGoogle advertising IDor the
READ_PHONE_STATE permission.

7 Evaluation of Existing Wallets and Data Storage Apps 51

PassWallet - mobile passes PassWallet - mobile passes (com.attidomobile.
passwallet) [34] is another example of a ticket wallet, implemented in Kotlin,
that, again, allows users to store andmanage their passes. It’s noteworthy that
the implementation is straightforward, with no custom functionality added
through native libraries and minimal permissions required, almost only those
essential for the app’s operation,with exceptions like access to thedevices’ ad-
vertising ID.

7.1.3 PDFWallets

PDFWallets are apps that store PDF files. They are interesting to look at, as the
data they store is sometimes critical, but usually doesn’t need to be transmitted
to third parties. There is not a wide variety of features that these apps can and
should have, and thus only one appwas found that fits this category (Table 7.1).

Green Pass PDF Wallet Green Pass PDF Wallet (com.michaeltroger.gruener-
pass) [101] is a pure and minimalistic PDF storage application. It does not rely
on biometrics or any other KeyStore functionality for data protection. It uses
the Jetpack RoomDatabase for storage. When it comes to retrieving data, the
app only employs the query SELECT * FROM certificate. Additionally, the app is
capable of decrypting password-protected PDFs and converting them into lo-
cal, unprotected temporary files.

All in all, the app is basic and straightforward, lacks any kind of special encryp-
tion or security features, but it does its job and doesn’t claim to be anything
more than a PDF storage app.

7.1.4 Open CryptoWallets

CryptoWallets are apps that store cryptocurrencies. Wemade a distinction be-
tween open and closed source cryptocurrency wallets, as the closed ones are
usually tough to decompile and analyze due to their complex and domain spe-
cific implementations and rather large codebases. They are interesting to look
at, as the data they store is critical, and the apps are expected to be secure,
whilst beingable to transmit the verifiable, authentic data to thirdparties. They
usually have multiple interesting components, such as their ability to store
wallet keys, their ability to perform operations on the blockchain, and their
ability to transmit data to third parties.

All the apps in this category use secure network connections, andmost of them
use the Android KeyStore to protect their keys (Table 7.1).

Electrum Electrum (org.electrum.electrum) [62] has both a desktop and An-
droid client. It is built usingPythonand theKivy framework.Despite the signif-
icant size of the codebase, there is minimal documentation available. Encryp-
tion hardware does not appear to be used in the application; instead, it only re-
lies on a user password for authentication during each login to access the oth-
erwise unencrypted wallet data files. Interesting to note is that the application
uses three permissions, camera, internet andWRITE_EXTERNAL_STORAGE.

7 Evaluation of Existing Wallets and Data Storage Apps 52

Bitpay Wallet Bitpay Wallet (com.bitpay.wallet) [39] by BitPay, Inc. is an app
built using Apache Cordova. To protect its data, it uses the Fingerprint AIO plu-
gin for Cordova [107], which uses system APIs of biometrics for both Android
and iOS.

BitcoinWallet BitcoinWallet (de.schildbach.wallet) [38] is a simplistic Bitcoin
wallet for Android, implemented in Java. It features no protection of data itself,
and instead relies on the Android system to protect its data (Table 7.1).

Simple Bitcoin Wallet The Simple Bitcoin Wallet (com.btcontract.wallet) [33]
is built using Scala. It uses the Tor network for communication, but it doesn’t
use the Android KeyStore for storing its keys, as it does all of its cryptography
in software. Interestingly, this app has imported the source code of some li-
braries into its own codebase, instead of using the libraries as dependencies.
This makes it harder to update the libraries, and makes it more likely that the
app will use an outdated version of the library, but it also makes it easier to
have a good version that is secure from supply chain attacks, and in the case of
cryptowallets,modifying the libraries could also be a necessary step to include
domain specific features.

Blockstream Green Blockstream Green (com.greenaddress.greenbits_an-
droid_wallet) [42] is a company backed Bitcoin wallet that uses a plain,
unencrypted Jetpack RoomDatabase [40, 41]. It uses biometric authentication,
but the CryptoObject is not used, and thus the biometric authentication is not
backed by the Android KeyStore.

Unstoppable Crypto Wallet One key security feature of the Unstop-
pable Crypto Wallet (io.horizontalsystems.bankwallet) [81] is its abil-
ity to detect rooted devices. The wallet also utilizes the Tor network.
The application employs biometric authentication through the biomet-
ricPrompt.authenticate(promptInfo.build()) method, but does not utilize
the CryptoObject [83]. User data in the Unstoppable Crypto Wallet is stored
in a plain Jetpack RoomDatabase [82]. To ensure data security, the appli-
cation manually encrypts values within the database using an AES/CBC/P-
KCS7Padding cipher and a SecretKey that requires user authentication to
access, but biometric authentication is optional.

ZapAndroid ZapAndroid (zapsolutions.zap) [144] is implemented in Java, can
be built from source, and uses Tor for some of its network connections. For
storing its preferences at rest, it uses encrypted shared preferences, together
withanandroidx.security.crypto.MasterKey [145]. Bypassing thebiometric au-
thentication is easily possible on rooted devices, as the app does not use the
CryptoObject, and thus the access to the key is not backed by biometric authen-
tication. This does, however, not mean that the app is less secure than other
apps, as the data still is encrypted at rest.

AirGapVault AirGapVault (it.airgap.vault) [3] is a Crypto currency storage ap-
plication. It is meant to be used together with the AirGap Wallet, which is a
companionapp that is used to sign transactions.Nevertheless, theAirGapVault

7 Evaluation of Existing Wallets and Data Storage Apps 53

is a standaloneappused to store thekeys, and thedesigndecisions, asdescribed
by the authors [3], are interesting to look at.
Additionally, the app uses the RootBeer library [126] to detect rooted devices,
and it uses the Android KeyStore to store its keys.

7.1.5 Closed Source CryptoWallets

Even though the closed-source wallets are usually tough to decompile and an-
alyze due to their domain specific implementations and rather large codebases,
we were able to analyze some of them. Their results, as shown in Table 7.1, are
generally good, but there are open source alternatives that offer better security
features with more transparency.

Coinbase Wallet: NFTs & Crypto The Coinbase Wallet: NFTs & Crypto (org.
toshi) [51], a React Native application, intriguingly appears to contain some
debugging code, suggesting it might rather be a development build than a fi-
nalized release. This application has permissions to access user contacts and
media folders, including images and videos, and is capable of media playback.
The uses the Android KeyStore, and actually properly uses biometric authenti-
cation to protect its keys.

Trust: Crypto & Bitcoin Wallet Trust: Crypto & Bitcoin Wallet (com.wallet.
crypto.trustapp) [141] is a Kotlin application with its core functionality encap-
sulated in a native shared object. This binary file is dynamically loaded into the
app at runtime, providing the essential operations of the wallet.
Interestingly, the authors appear to have unintentionally left in Debug-
ProbesKt.bin, a helper binary used for debugging Kotlin Coroutines in IntelliJ
IDEA. This could potentially suggest that the app was in a development phase
or that there was an oversight during the final stages of deployment.
In terms of security, the application employs the Android KeyStore to generate
cryptographic keys, and it uses SQLCipher for encrypted databases, enhancing
the security of stored data. The application also uses the RootBeer library to
detect and block rooted devices, and it has been obfuscated in a way that sig-
nificantly slows down the process of automatic decompilation and review.
On the data privacy side, the developers state in their Google Play Store listing
that they collect user interactiondata for analyticspurposes, and theyexplicitly
mention that they don’t provide an option to delete this data.

7.1.6 Authenticator Apps

Aegis Authenticator Aegis Authenticator (com.beemdevelopment.aegis) [36]
can“Import fromother authenticator apps: 2FAS Authenticator, Authenticator Plus,
Authy, andOTP, FreeOTP, FreeOTP+, Google Authenticator,Microsoft Authenticator,
Plain text, Steam, TOTPAuthenticator andWinAuth (root access is required for some
of these)” [37].
This shows that the app is able to access the data of other apps, which shows
a security risk in those apps if the extraction is possible without user interac-
tion. The data that is extracted could be very well copied to a remote device if a
malicious app wants to.
The app itself also employs a custom crypto library which is designed after the
LUKS standard and protects its master key with the KeyStore [37].

7 Evaluation of Existing Wallets and Data Storage Apps 54

Microsoft Authenticator Microsoft Authenticator (com.azure.authentica-
tor) [102] stores its data in an SQLite database, which is not protected by the
KeyStore. This allows for easy access to the data, as the database can be copied
from the device and read with a SQLite database viewer, or the data can be
extracted from the database using a rooted device, like Aegis Authenticator
does. This app is part of the Microsoft Entra Verified ID [103] ecosystem.

7.1.7 PasswordManagers

Keepass2Android Keepass2Android (keepass2android.keepass2android) [120]
is a password management application developed using the Xamarin frame-
work. As an open-source project, it provides extensive documentation,making
it accessible for developers and users alike to understand its functionality and
structure. One of the unique features of Keepass2Android is that it offered
some functionality that relies on the device being rooted. On rooted devices,
the application was able to automatically switch the input method to a custom
keyboard, which could be used to enter passwords securely. While this is not a
common requirement for most users, it did provide additional capabilities for
those who have rooted devices, but this feature was removed in a later version
of the app. The application also incorporates biometric authentication as a
security measure. This feature uses a symmetric cipher to secure the user’s
data. The biometric authentication can serve two purposes in the application:

It can replace the QuickUnlock functionality, which allows users to reopen
thedatabasewithina certainperiodof timeusingadifferentpassword, typ-
ically a portion of themaster key. This provides a balance between security
and convenience, as users can quickly access their data without needing to
input the full master key each time.

Alternatively, the biometric authentication can be used to store the master
key on the device itself. Themaster key is then encrypted and decrypted us-
ing biometric data. This method is more convenient for users, as they only
need to provide their biometric data to access the database, but in turn, it is
less secure in certain scenarios, as the master key is stored on the device.

7.1.8 Banking

BankingApps are an extreme example ofwallets that need to protect their data.
They need to be secure whilst maintaining a good user experience, as they are
expected to be used frequently. Important required features are the ability to
securely access the banking data, to perform transactions, and to display the
data to the user. This has to happen in a secure way, as the data is critical to
users. Security features have to include the protection of offline data, through
key-store backed encryption, the protection of network traffic to avoid mod-
ification and tracking of transactions, and the protection of the user interface
to deny screen captures and to deny tampering attempts with the data that is
displayed to the user.

RaiffeisenMein ELBA-App The RaiffeisenMein ELBA-App (at.rsg.pfp) [123] is
a banking application developed using the Kotlin programming language. It is
designed with a high level of security and user-friendliness in mind. The ap-
plication fetches all its data from remote servers, ensuring real-time access to
banking information. Access to these servers is secured with a personal PIN or

7 Evaluation of Existing Wallets and Data Storage Apps 55

a key protected by biometric authentication. To prevent unauthorized access or
data leakage, the application disallows screenshots, ensuring that critical in-
formation remainswithin the app. It also features root detection capabilities to
prevent accidental usage on compromised devices.

7.2 Evaluation Results

The evaluation results of the existing wallets and data storage apps are shown
in Table 7.1. Interestingly,most apps in the same category have similar results.

7.2.1 Storage

In the realm of storage, many applications rely on the inherent security of the
Android sandbox to safeguard their data. This is a common practice, especially
among JavaScript-based development frameworks. These frameworks typi-
cally either have a custom KeyStore abstraction or depend on their ability to
incorporate native Java code. When it comes to encryption, all the evaluated
applications utilize either the encryptionmechanisms provided by the Android
KeyStore or implementwell-known encryption algorithms themselves, an ex-
ample of which is Keepass2Android. It’s important to note that using a finger-
print without a CryptoObject does not ensure secure storage. Instead, it merely
provides protection for the user interface, a fact confirmed by the development
team behind Google’s Tink library1.

An example for how React Native apps can store their data securely is the
Learner Credential Wallet, which uses Crypto-js and @microsoft/msr-
crypto for cryptographic operations, and the interaction with the platform’s
hardware-backed KeyStore is managed by react-native-keychain.

7.2.2 Network

The default Android approach to establish network connections is using
HTTPS, enhancing the overall security of applications. The complexity of
establishing an HTTPS connection is abstracted away by the Android system,
with added security features such as certificate pinning. Certificate pinning
makes MITM attacks more difficult, as an attacker has to inject custom code
into the app to bypass it. Additionally, Simple Bitcoin Wallet and Zap Android
leverage the Tor network to anonymize their connections, further bolstering
their security by ensuring the privacy of their network traffic. There were very
few apps that did not use secure connections at somepoints, but those insecure
connections were usually not critical to the app’s functionality, but still can
pose a security risk.

7.2.3 User Interface

Themajority of applications, 81% (18/22), implement some formof user inter-
face protectionmechanism, but that still leaves 19%of the applications, which

1https://github.com/tink-crypto/tink-java/blob/6f0621038f828d965c3e416e836de761550b4549/
src/main/java/com/google/crypto/tink/integration/android/AndroidKeysetManager.java

https://github.com/tink-crypto/tink-java/blob/6f0621038f828d965c3e416e836de761550b4549/src/main/java/com/google/crypto/tink/integration/android/AndroidKeysetManager.java
https://github.com/tink-crypto/tink-java/blob/6f0621038f828d965c3e416e836de761550b4549/src/main/java/com/google/crypto/tink/integration/android/AndroidKeysetManager.java

7 Evaluation of Existing Wallets and Data Storage Apps 56

Table 7.1: Evaluation Results of Existing Wallets and Data Storage Apps

Name St
or
ag
e

N
et
w
or
k

U
se
r
In
te
rf
ac
e

Pe
rm

is
si
on

s

U
pd
at
es

R
oo
tD

et
ec
ti
on

R
ep
ro
du
ci
bl
e

N
at
iv
e
Co
de

Learner Credential Wallet 2 3 2 3 2 1 Yes Yes
Google Wallet 3 2 2 2 2 2 No Yes
Evernym Connect.Me 2 2 2 3 2 3 Yes Yes
WalletPasses | PassbookWallet 2 1 1 1 1 1 No No
Pass2UWallet - digitize cards 1 1 1 1 2 1 No Yes
PassWallet - mobile passes 1 1 1 2 1 1 No No
Green Pass PDFWallet 1 Offline 2 3 2 1 Yes No
Electrum 1 3 2 2 2 1 Yes Yes
Bitpay Wallet 3 3 2 1 1 1 No Yes
Bitcoin Wallet 1 3 1 2 2 1 Yes No
Simple Bitcoin Wallet 2 TOR, 3 2 2 1 1 Yes Yes
Blockstream Green 3 3 2 2 2 1 Yes Yes
Unstoppable Crypto Wallet 2 VPN, 3 2 2 2 2 Yes Yes
Zap Android 2 TOR, 3 2 2 2 1 Yes Yes
AirGap Vault 2 Offline 2 3 2 3 Yes Yes
Coinbase Wallet: NFTs & Crypto 3 3 2 1 2 2 No Yes
Trust: Crypto & Bitcoin Wallet 3 3 2 1 2 2 No Yes
Aegis Authenticator 3 3 2 2 2 0 Yes No
Microsoft Authenticator 1 2 2 2 2 1 No Yes
Keepass2Android 3 Offline 2 3 2 0 Yes Yes
Raiffeisen Mein ELBA-App 4 3 2 2 2 2 No Yes

7 Evaluation of Existing Wallets and Data Storage Apps 57

1 public void onAuthenticationSucceeded(@NonNull BiometricPrompt.
AuthenticationResult result) {

2 super.onAuthenticationSucceeded(result);
3 PrefsUtil.editPrefs().putBoolean(PrefsUtil.BIOMETRICS_PREFERRED, true).apply()

;
4 TimeOutUtil.getInstance().restartTimer();
5 PrefsUtil.editPrefs().putInt("numPINFails", 0).apply();
6 Intent intent = new Intent(PinEntryActivity.this, HomeActivity.class);
7 intent.addFlags(Intent.FLAG_ACTIVITY_CLEAR_TASK | Intent.

FLAG_ACTIVITY_NEW_TASK);
8 startActivity(intent);
9 }

Listing 7.1: Zap Android Biometric Authentication Callback

do not require additional confirmation of the user’s identity once the device is
unlocked.

Commonmethods of user interface protection include passwords, PINs or bio-
metric authentication, where during the app’s startup a biometric prompt is
shown to the user, either with or without the CryptoObject to protect the data.
Thisprotection isoften implementedasaby-product, as thebiometric authen-
tication ismeant to protect the data, and theuser interface is protected as a side
effect. It’s important to note that the biometric authentication does not protect
the data itself, but only the user interface. If the data is not protected by theAn-
droid KeyStore, the data is not secured.

An example for such UI protection is Zap Android (see section 7.1.4), which
starts theprotectedhomescreen activity froma successful biometric authenti-
cation callback (see Listing 7.1). This means in order to circumvent the UI pro-
tection of the app, an attacker would only have to start the activity without the
callback.

Similarly, AirGapVault (section7.1.4) uses thebiometric authentication topro-
tect the UI. It actually has the code shown in Listing 7.2 in its secure storage
class2.

7.2.4 Permissions

It is clear that the number of permissions an app requires often correlates with
the size of the app and the breadth of its feature set. Larger applications with
more features typically require more permissions. However, it’s worth noting
that certain apps, such as Bitpay Wallet, Coinbase Wallet: NFTs & Crypto, and
Trust: Crypto & Bitcoin Wallet, request a significant number of permissions
that are not essential for their core functionality.

7.2.5 Updates

A significant majority of applications, specifically 20 out of 22, receive regular
updates, ensuring their functionality remains up-to-date and secure. The ap-
plicationWalletPasses |PassbookWallet is especiallynoteworthy, since it hada

2https://github.com/airgap-it/airgap-vault/blob/60feba0bfd7cf3129587ec2b0e39a48eb70503ef/
android/app/src/main/java/it/airgap/vault/plugin/securityutils/storage/Storage.kt

https://github.com/airgap-it/airgap-vault/blob/60feba0bfd7cf3129587ec2b0e39a48eb70503ef/android/app/src/main/java/it/airgap/vault/plugin/securityutils/storage/Storage.kt
https://github.com/airgap-it/airgap-vault/blob/60feba0bfd7cf3129587ec2b0e39a48eb70503ef/android/app/src/main/java/it/airgap/vault/plugin/securityutils/storage/Storage.kt

7 Evaluation of Existing Wallets and Data Storage Apps 58

1 BiometricPrompt(this, executor, object : BiometricPrompt.AuthenticationCallback()
{

2 override fun onAuthenticationError(errorCode: Int, errString: CharSequence) {
3 super.onAuthenticationError(errorCode, errString)
4 _resultDeferred.complete(false)
5 }
6
7 override fun onAuthenticationSucceeded(result: BiometricPrompt.

AuthenticationResult) {
8 super.onAuthenticationSucceeded(result)
9 _resultDeferred.complete(true)
10 }
11
12 override fun onAuthenticationFailed() {
13 super.onAuthenticationFailed()
14 _resultDeferred.complete(false)
15 }
16 })

Listing 7.2: AirGap Vault Biometric Authentication Callbacks

periodof stagnationwhere it didnot receiveupdates for several years.Recently,
this trend has reversed, and the application has started receiving frequent up-
dates again.

7.2.6 Root Detection

Out of the 22 evaluated applications, 5 of them utilize root detection mecha-
nisms to inform users that their device is rooted. Furthermore, 2 out of the 22
applications go a step further by using root detection to block the operation of
the application on rooted devices. It’s noteworthy that these applications rely
on established libraries such as Play Integrity or other purpose-designed li-
braries like RootBeer for root detection, rather than implementing custom so-
lutions.

7.2.7 Reproducible

10 out of the 22 evaluated applications provide the capability to be built from
source. The apps were not tested for binary reproducibility, as that would re-
quire us to acquire the signing keys of the apps, as comparing a signed with an
unsigned binary is an open research question.

7.2.8 Native Code

Applications developed using React Native, Apache Cordova, andMono/C# in-
herently utilize native code. This is due to the nature of these frameworks,
which compile down to native code. Furthermore, a significant number of ap-
plications, particularly those related to cryptocurrency, incorporate natively
compiled cryptocurrency libraries. This results in a substantial amount of na-
tive code within these applications. Only a minority of the evaluated applica-
tions, specifically 5 out of 22, do not incorporate any business logic as native
code.

Chapter 8

Results

8.1 Overview

With the current state of the art, it is possible to implement a digital wallet on
a smartphone that is at least as secure as a physical wallet.

The actual security of a digital wallet currently depends on the security of the
smartphone it is running on. If the smartphone is compromised, then in most
cases the wallet is easily compromised as well.

On Android, data is vulnerable if it is somehow possible that it is unencrypted
at some point, even if this is just due to reordering of program functions or
by abusing weak encryption algorithms. In a digital identity wallet the data is
usuallymeant to be storedoffline, and transmitted to analsopotentially offline
verifier.

Storing data at rest on a relatively modern device is not an issue. The issue is
the fact that the data needs to be accessed at some point, and this is where the
problems start. There needs to be a way to import data into the wallet, to store
it, and there needs to be a way to export data from the wallet, to use it.

Data at Rest

Properly protecting data at rest can be called a solved problem, as modern de-
vices provide secure storage mechanisms, like TEEs, in combination with en-
cryption algorithms. Android apps can use the KeyStore API, together with en-
cryption libraries, such as SQLCipher or Google Tink, to store data in a secure
way.

Data in Transit

Protecting data in transit is relatively easy, as there are well established pro-
tocols and algorithms to do so. Most apps already employ secure mechanisms,
such asHTTPS, and in evenmore extreme cases VPN tunnels, so this area is not
an issue anymore. Still, when implementing it needs to be implemented cor-
rectly, and implementers should not just rely on the security of the transport
medium.

Data in Use

This area is the most unexplored and thus difficult to protect. In the explored
applications, most Systems expect at least one party to be trustworthy [128],

59

8 Results 60

which is not always the case in the Digidow scenario. If there is no trusted en-
vironment to run code in, the only way to protect data in use is to not decrypt
it at all, if possible.
In our context, not all data needs to be available at the same time. The identity
documents are independent from each other, and sometimes support selective
disclosure, where even less of a document needs to be decrypted to be usable.
This is feasible for the importing of identity documents, for example, by trans-
mitting a trust zone backed public key to the issuer, which is then used to en-
crypt the identity document, which in turn can only be decrypted by the trust
zone. This way of protecting data does not work for the transmission of doc-
uments or elements thereof to a verifier, as a client would need to decrypt the
data in order to re-encrypt it for the verifier. An approach here would be to en-
crypt the data twice, and to apply the decryption only after the data has been
re-encrypted, but in a naive implementation this would imply the possibility
of reordering the code on the client to get a state of complete decryption, as
seen in Apples iTunes DRM [138].
Another approach would be to use a proxy re-encryption (PRE) scheme. PRE is
a cryptographicmethod that allows a proxy to transform a ciphertext fromone
public key to another, without learning anything about the underlying plain-
text [46]. This way the issuer could encrypt the identity document, and the
client could re-encrypt it for the verifier, without ever decrypting it. This ap-
proach sadly has some issues as well, since the proxy would still need to be
trusted to a certain degree to guarantee that the re-encryption is done con-
fidentially and correctly [109]. Another limitation would be the fact that the
proxy cannot interact with the data themselves, as they would need to decrypt
it first, which is not possible in this scenario.
Zero-knowledge proofs are another way to prove that a certain data is cor-
rect, without actually revealing the data itself. These approaches are usually
complex, but they offer many more features to transmit data securely, as data
should not have to be transmitted at all, but only the proof that the data is cor-
rect. Having hardware support for Zero-Knowledge Proof (ZKP) methods in
Android devices could be useful. Thesemethods are computationally heavy and
offer interesting features, so having them built into the device could improve
performance.

8.2 Best Practices forWallet Apps

8.2.1 Security

There are a lot of different security aspects that need to be considered when
creating a new wallet. The data in the wallet needs to be protected from unau-
thorized access, andmay not provide any information outside of what the user
absolutely needs to share. Additionally, security needs to be considered when
planning for a longer term use of the wallet, as the user might switch to a dif-
ferent device, might reset this device or might even lose it. Revocation of doc-
uments (such as a driver’s license) is also a security aspect that needs to be
considered from a provider’s perspective.

Secure Storage

The most important aspect of a secure wallet is the secure storage of the data.
LuckilyAndroid and iOSprovide a secure storage for theuser’s data,where keys

8 Results 61

to data can be set to be protected by biometrics, such as fingerprints or face
recognition. Sadly at the point of writing only Android, not iOS, supports the
creation of a certificate that validates that a key is actually protected by bio-
metrics.

Even though the storage is secure when it comes to unauthorized access, it is
still possible to read the datawhen it is inserted into or extracted from the stor-
age, as the data is usually not encrypted in those cases.

The actual storage should work as follows:

The identity document is stored in a self containing format, such as a PDF
file or a JSON-LD document.u The self containing format could be split internally to support selective

disclosure.

Create a cipher that is protected by the KeyStore (maybe with biometrics).

The identity document or its parts are encrypted with said cipher.

The encrypted identity document is stored in a SQLdatabase, such as SQLite
or Room-db, together with the cipher identifier, a boolean value indicating
the need for biometrics to unlock and the proof-of-possession data.

The SQL database is encrypted with a cipher that is protected by the Key-
Store, maybe utilizing biometrics (User Preferences).

These multiple layers of encryption ensure that the data is secure at all times,
that the data is only accessible when the user is actually using the wallet, and if
a single layer is compromised, the data is still secure.

Authenticity

For a valid identity it is important that the user is actually presenting an of-
ficial, valid and authentic document. This can be achieved by using a trusted
third party, such as a government agency or a company, to verify the authen-
ticity of the initial document that is stored in the wallet. In a classical scenario
this would be a CA that issues a certificate that is then used to sign the identity
document.

To avoid the constant need to verify the document against the original and to
ensuremaximumprivacy for the user the identity document and every subpart
that is available through selective disclosure should be stored in a self contain-
ing format that is not dependent on the original document or the third party
providing it.

Device Binding

The identity provider must also sign the protection key of the identity docu-
ment to assure to the party requesting an authentication that the identity doc-
ument is authentic and has not been extracted from another device or wallet.
This signature can be verified by the requesting party to ensure that the iden-
tity document is stored on the original device, which in turn is the device that
is owned by the user and verified by the issuing authority.

8 Results 62

User Binding

The issue with most wallets is the fact that they store credentials without any
proof of possession mechanisms, so there is no way to prove the user is the
original holder this credentialwas issued to. User binding is a problem, because
the user (or a 3rd party) could just copy the credential and send it to another
person, who could then use it as well.

A similar problem exists with physical wallets, as there is usually no way to
prove the user (person showing an ID) is the original holder (the person an ID
was issued to) of the credentials (like a drivers license). If going by themost ac-
curate formofverification, the (biometric)photo, thenaperson lookingsimilar
to the photo could use the ID as well.

Proof of possession and proof of intentionmechanisms can and should be im-
plemented in digital wallets to increase their security.

Thesemechanisms are usually only specific to a single device, as anybody with
pre-enrolled biometric data would be a valid user of the wallet. These mecha-
nisms also need un-breakable Trusted Execution Environments (TEE) to avoid
authenticating with wrong biometrics, and they need to be invalidated when a
new biometric is enrolled.

In an ideal world, the setup process includes the complete removal of all pre-
enrolled biometrics, so that only the biometrics of the current, actual, interact-
ing user are enrolled. This would need an attestation that verifies that no other
biometrics are enrolled, which is not possible/implementedwith current TEEs.

Secure Interface

This also belongs in part to the secure storage, as a key protected with biomet-
rics can only be accessed when accessing the wallet with said biometrics. It is
therefore necessary and a good practice to use biometrics to unlock the wallet.

DataMigration

Withusability inmind, it is also important to consider thepossibility of theuser
setting up the wallet on a different device. It is necessary to provide a way to
transfer to a new device without losing any data and without risking the secu-
rity of the stored documents. Thismight be achieved byusing a different verifi-
cationmethod, such as logging in to a service providedby the issuing authority,
or inhigher security cases byphysically confirming the device ownership to the
issuing authority. Android already provides a way to securely transfer app data
between devices, but there is no way to transfer the contents of a KeyStore, so
the backup and restore process would need to be implemented by the wallet
itself.

Secure Communication

A basic requirement for a secure wallet is the secure communication between
the wallet and the issuer of the identity. This can be achieved by using a secure
channel, such asHTTPS, to communicatewith the issuer or by using physically
close range technologies, such as NFC or QR codes, to import the identity doc-
ument into the wallet. Close range technologies aremore secure, as they auto-
matically imply a physical presence of the user, and the communication does

8 Results 63

not have to use the internet. This is all dependent on the issuer’s capabilities
and the proposed use case and security level. In a high security case, the issuer
might require the user to visit their office to verify the identity document, in a
lower security case the issuer might only require the user to confirm the iden-
tity document by scanning a QR code sent by mail, and in a very low security
case the issuer might only require the user to download the identity document
from their website.

Device Integrity

The integrity of the device is also an important aspect of a secure wallet. It
should be checked regularly if the device is still in a secure state, and if not, the
user should be notified about potential risks. Using Device Attestation, as de-
scribed in section4.11.5, it is possible to check the integrity of a device. Blocking
the wallet when the device is not in a secure state is a good practice, as it pre-
vents the user from accidentally using the wallet in an insecure environment,
yet there should be a way to manually allow the use of the wallet in an inse-
cure environment if users are truly aware of the risks. Fully banning insecure
or modified devices from using the wallet could lead to users rooting their de-
vices to use the wallet, which is a security risk in itself.

Update Policy

A secure wallet should also have a good update policy, so that the user is al-
ways using the latest version of the wallet. This is important, as new security
issues might be discovered regularly, and it is important to fix them as soon
as possible. This means that the building and deployment process should be as
automated as possible, whilst still going through a thorough an advanced au-
tomated testing process to avoid regressions.

8.2.2 Visual Design

The design of a wallet also plays a role in the usability and thus the security of
the wallet.

Theneed for an easy anduser-friendlyway of navigating throughdifferent op-
tions and screens is an important aspect of a secure wallet, as the user should
not be confusedor overwhelmedby the interface andaccidentally providemore
information than necessary [53].

It should also be easy to integrate thewallet into the user’s daily life, so that the
user does not have to think about thewallet and can use it withoutmuch effort.
Similarly, this also applies to the issuing authorities and parties requesting au-
thentication, as they should be able to easily integrate thewallet into their sys-
tems.

From a purely optical point of view an appealing design is also important, as
the user should be motivated to use the wallet. This could even go as far as to
provide a replaceable frontend for the wallet, so that the user can choose a de-
sign that fits their personal taste. This would, of course, bring new challenges,
such as the need to verify the frontend obstructs no information and does not
affect usability in any way. This could help with getting rid of users installing
modded versions of the wallet, or using root permissions to change the design
of the wallet.

8 Results 64

A good, simple way to integrate modern design into a wallet is to use the Ma-
terial You1 design system, which provides variables with the color scheme of a
user, and can be used to easily create a design that fits the user’s personal taste.

1https://material.io/blog/start-building-with-material-you

https://material.io/blog/start-building-with-material-you

Chapter 9

Conclusion

In this thesis, we explored the security features available in the Android oper-
ating system and checked how well different digital wallet apps use these fea-
tures. We examined several types of wallets, such as cryptocurrency wallets,
payment wallets, ticket wallets, and identity wallets. By looking at each cat-
egory, we assessed the security features each app used, based on our under-
standing of Android’s architecture and its security tools like sandboxing, the
KeyStore system, biometrics, and encryption.

Our findings showed that the use of Android’s security features varies widely
among different wallets. Some wallets use best practice approaches to secu-
rity, while others lack important protections, making them more vulnerable.
For example, the use of biometric authentication differed significantly, affect-
ing the overall security of the affected wallets.

We used specific criteria to evaluate the wallets, such as storage protection,
network security, user interface protection, permissionsmanagement, update
policies, root detection, and theuseofnative code. These criteria helpedus sys-
tematically analyze each wallet’s security. The results highlight the need for a
comprehensive approach to security, integrating multiple layers of protection
to ensure user data is safe.

This researchpointsoutweaknesses in currentwallet securitypractices andof-
fers recommendations for developers. Future research could build on thiswork
by exploring new features as Android updates or by implementing themissing
security features like user binding.

65

Bibliography

[1] Abi Raja. 2024. screenshot-to-code Github Repository. (January 2024).
Retrieved 02/08/2024 from https://github.com/abi/screenshot-to-co
de.

[2] Abraham Augustine. 2023. The Limits of Accelerating Digital-Only Fi-
nancial Inclusion. (July 2023). Retrieved 04/22/2024 from https://carn
egieendowment.org/2023/07/13/limits-of-accelerating-digital-only
-financial-inclusion-pub-90175.

[3] AirGap. 2024. airgap-vault Github Repository. (April 2024). Retrieved
04/25/2024 from https://github.com/airgap-it/airgap-vault.

[4] Sumaya Almanee, Mathias Payer, and Joshua Garcia. 2021. Too Quiet in
the Library: A Study of Native Third-Party Libraries in Android. CoRR.
DOI: 10.48550/ARXIV.1911.09716. arXiv: 1911.09716.

[5] ImanM.Almomani andAalaAlKhayer. 2020.AComprehensiveAnalysis
of theAndroidPermissionsSystem. IEEEAccess, 8, 216671–216688.DOI:
10.1109/ACCESS.2020.3041432.

[6] Amber Steel. 2023. The Compromised Credentials Crisis: A Challenge
Plaguing theCybersecurity Industry. (June2023). Retrieved04/22/2024
from https://blog.lastpass.com/posts/2023/06/the-compromised-cre
dentials-crisis-a-challenge-plaguing-the-cybersecurity-industry.

[7] Andre Lipke. 2020. Reverse Engineering Flutter Apps. (March 2020).
Retrieved 09/05/2023 from https://blog.tst.sh/reverse-engineering
-flutter-apps-part-1/.

[8] Andrew Kennedy. 2022. Employee Identity and Access Management: A
BITS Primer. (March 2022). Retrieved 04/22/2024 from https://bpi.co
m/employee-identity-and-access-management-a-bits-primer/.

[9] Android Open Source Project. 2023. Android 14 Compatibility Defini-
tion: Biometric Sensors. (November 2023). Retrieved 01/24/2024 from
https://source.android.com/docs/compatibility/14/android-14-cdd#7
310_biometric_sensors.

[10] Android Open Source Project. 2024. Android Keystore system. (January
2024). Retrieved 01/24/2024 from https://developer.android.com/trai
ning/articles/keystore.

[11] AndroidOpenSourceProject. 2022. APKSignature Schemev2. (Septem-
ber 2022). Retrieved 05/09/2023 from https://source.android.com/doc
s/security/features/apksigning/v2.

[12] Android Open Source Project. 2022. APK Signature Scheme v3. (October
2022). Retrieved 05/09/2023 from https://source.android.com/docs/se
curity/features/apksigning/v3.

[13] AndroidOpenSourceProject. 2022.APKSignatureSchemev4. (Septem-
ber 2022). Retrieved 05/09/2023 from https://source.android.com/doc
s/security/features/apksigning/v4.

[14] Android Open Source Project. 2023. Application Sandbox. (October
2023). Retrieved 01/24/2024 from https://source.android.com/docs/se
curity/app-sandbox.

66

https://github.com/abi/screenshot-to-code
https://github.com/abi/screenshot-to-code
https://carnegieendowment.org/2023/07/13/limits-of-accelerating-digital-only-financial-inclusion-pub-90175
https://carnegieendowment.org/2023/07/13/limits-of-accelerating-digital-only-financial-inclusion-pub-90175
https://carnegieendowment.org/2023/07/13/limits-of-accelerating-digital-only-financial-inclusion-pub-90175
https://github.com/airgap-it/airgap-vault
https://doi.org/10.48550/ARXIV.1911.09716
https://arxiv.org/abs/1911.09716
https://doi.org/10.1109/ACCESS.2020.3041432
https://blog.lastpass.com/posts/2023/06/the-compromised-credentials-crisis-a-challenge-plaguing-the-cybersecurity-industry
https://blog.lastpass.com/posts/2023/06/the-compromised-credentials-crisis-a-challenge-plaguing-the-cybersecurity-industry
https://blog.tst.sh/reverse-engineering-flutter-apps-part-1/
https://blog.tst.sh/reverse-engineering-flutter-apps-part-1/
https://bpi.com/employee-identity-and-access-management-a-bits-primer/
https://bpi.com/employee-identity-and-access-management-a-bits-primer/
https://source.android.com/docs/compatibility/14/android-14-cdd#7310_biometric_sensors
https://source.android.com/docs/compatibility/14/android-14-cdd#7310_biometric_sensors
https://developer.android.com/training/articles/keystore
https://developer.android.com/training/articles/keystore
https://source.android.com/docs/security/features/apksigning/v2
https://source.android.com/docs/security/features/apksigning/v2
https://source.android.com/docs/security/features/apksigning/v3
https://source.android.com/docs/security/features/apksigning/v3
https://source.android.com/docs/security/features/apksigning/v4
https://source.android.com/docs/security/features/apksigning/v4
https://source.android.com/docs/security/app-sandbox
https://source.android.com/docs/security/app-sandbox

Bibliography 67

[15] Android Open Source Project. 2022. Cryptography. (October 2022). Re-
trieved 04/26/2023 from https://developer.android.com/guide/topics
/security/cryptography.

[16] Android Open Source Project. 2023. Explain access tomore sensitive in-
formation. (May 2023). Retrieved 05/22/2023 from https://developer.a
ndroid.com/training/permissions/explaining-access.

[17] Android Open Source Project. 2023. Face Authentication HIDL. (August
2023). Retrieved 09/26/2023 from https://source.android.com/docs/se
curity/features/biometric/face-authentication.

[18] Android Open Source Project. 2024. File-Based Encryption. (January
2024). Retrieved 01/24/2024 from https://source .android .com/docs
/security/features/encryption/file-based.

[19] Android Open Source Project. 2023. Implementing dm-verity. (April
2023). Retrieved 05/24/2023 from https://source .android .com/docs
/security/features/verifiedboot/dm-verity.

[20] Android Open Source Project. 2023. Jetpack: Security. (April 2023). Re-
trieved 05/31/2023 from https://developer.android.com/jetpack/andro
idx/releases/security#security-identity-credential-1.0.0-alpha01.

[21] Android Open Source Project. 2022. Measuring biometric unlock secu-
rity. (October 2022). Retrieved 04/26/2023 from https://source.androi
d.com/docs/security/features/biometric/measure.

[22] Android Open Source Project. 2023. Permissions on Android. (April
2023). Retrieved 04/26/2023 from https://developer .android .com/g
uide/topics/permissions/overview.

[23] Android Open Source Project. 2023. Permissions updates in Android 11.
(May 2023). Retrieved 05/22/2023 from https://developer.android.com
/about/versions/11/privacy/permissions.

[24] Android Open Source Project. 2023. Platform architecture. (May 2023).
Retrieved 04/10/2024 from https://developer.android.com/guide/platf
orm.

[25] Android Open Source Project. 2023. Save data in a local database using
Room. (February 2023). Retrieved 04/26/2023 from https://developer
.android.com/topic/libraries/architecture/room.

[26] Android Open Source Project. 2023. Save data using SQLite. (March
2023). Retrieved 04/26/2023 from https://developer.android.com/tr
aining/data-storage/sqlite.

[27] Android Open Source Project. 2022. Security with network protocols.
(December 2022). Retrieved 04/26/2023 from https://developer.andr
oid.com/training/articles/security-ssl.

[28] AndroidOpenSourceProject. 2024. Showabiometric authenticationdi-
alog. (January 2024). Retrieved 01/24/2024 from https://developer.and
roid.com/training/sign-in/biometric-auth.

[29] Android Open Source Project. 2023. Shrink, obfuscate, and optimize
your app. (June 2023). Retrieved 09/05/2023 from https : / /developer
.android.com/studio/build/shrink-code.

[30] Android Open Source Project. 2023. Sign your app. (April 2023). Re-
trieved 04/26/2023 from https://developer.android.com/studio/pub
lish/app-signing.

[31] Android Open Source Project. 2023. SQLCipher for Android. (February
2023). Retrieved 04/26/2023 from https://github.com/sqlcipher/andro
id-database-sqlcipher.

https://developer.android.com/guide/topics/security/cryptography
https://developer.android.com/guide/topics/security/cryptography
https://developer.android.com/training/permissions/explaining-access
https://developer.android.com/training/permissions/explaining-access
https://source.android.com/docs/security/features/biometric/face-authentication
https://source.android.com/docs/security/features/biometric/face-authentication
https://source.android.com/docs/security/features/encryption/file-based
https://source.android.com/docs/security/features/encryption/file-based
https://source.android.com/docs/security/features/verifiedboot/dm-verity
https://source.android.com/docs/security/features/verifiedboot/dm-verity
https://developer.android.com/jetpack/androidx/releases/security#security-identity-credential-1.0.0-alpha01
https://developer.android.com/jetpack/androidx/releases/security#security-identity-credential-1.0.0-alpha01
https://source.android.com/docs/security/features/biometric/measure
https://source.android.com/docs/security/features/biometric/measure
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/about/versions/11/privacy/permissions
https://developer.android.com/about/versions/11/privacy/permissions
https://developer.android.com/guide/platform
https://developer.android.com/guide/platform
https://developer.android.com/topic/libraries/architecture/room
https://developer.android.com/topic/libraries/architecture/room
https://developer.android.com/training/data-storage/sqlite
https://developer.android.com/training/data-storage/sqlite
https://developer.android.com/training/articles/security-ssl
https://developer.android.com/training/articles/security-ssl
https://developer.android.com/training/sign-in/biometric-auth
https://developer.android.com/training/sign-in/biometric-auth
https://developer.android.com/studio/build/shrink-code
https://developer.android.com/studio/build/shrink-code
https://developer.android.com/studio/publish/app-signing
https://developer.android.com/studio/publish/app-signing
https://github.com/sqlcipher/android-database-sqlcipher
https://github.com/sqlcipher/android-database-sqlcipher

Bibliography 68

[32] Android Open Source Project. 2023. Tapjacking. (February 2023). Re-
trieved 04/26/2023 from https://developer.android.com/topic/secu
rity/risks/tapjacking.

[33] Anton Kumaigorodski. 2023. akumaigorodski/wallet Github Reposi-
tory. (November 2023). Retrieved 04/25/2024 from https://github.co
m/akumaigorodski/wallet.

[34] Attido Mobile. 2023. PassWallet - Passbook Wallet. (July 2023). Re-
trieved 04/25/2024 from https://play.google.com/store/apps/detail
s?id=com.attidomobile.passwallet.

[35] ax. 2024. apk.sh Github Repository. (February 2024). Retrieved
03/21/2024 from https://github.com/ax/apk.sh.

[36] Beem Development. 2024. Aegis Github Repository. (April 2024). Re-
trieved 04/25/2024 from https://github.com/beemdevelopment/Aegis.

[37] Beem Development. 2022. Aegis Github Repository: README.md. (De-
cember 2022). Retrieved 05/31/2023 from https://github.com/beemde
velopment/Aegis/blob/efd8e2d9ff25f59e3d4bcaab664641b0e45761e4
/README.md.

[38] Bitcoin Wallet Contributors. 2023. Bitcoin Wallet Github Repository.
(January 2023). Retrieved 01/24/2024 from https://github.com/bitco
in-wallet/bitcoin-wallet.

[39] BitPay. 2024. BitPay Wallet Github Repository. (April 2024). Retrieved
04/25/2024 from https://github.com/bitpay/wallet.

[40] BlockstreamCorporation Inc. 2023. BlockstreamGreen. (July 2023). Re-
trieved 09/13/2023 from https://github.com/Blockstream/green_andr
oid/blob/3c861f5752a8db586ab81142d0e559bb84c6d326/green/src/m
ain/java/com/blockstream/green/database/AppDatabase.kt.

[41] Blockstream Corporation Inc. 2023. Blockstream Green. (June 2023).
Retrieved 09/13/2023 from https://github.com/Blockstream/green_a
ndroid/blob/3c861f5752a8db586ab81142d0e559bb84c6d326/green/sr
c/main/java/com/blockstream/green/database/WalletDao.kt.

[42] Blockstream Corporation Inc. 2024. BlockstreamGreen Github Reposi-
tory. (April 2024). Retrieved 04/25/2024 from https://github.com/Bloc
kstream/green_android.

[43] Boris Batteux. 2022. The Current State & Future of Reverse Engineering
Flutter™Apps. (June 2022). Retrieved 09/06/2023 from https://www.g
uardsquare.com/blog/current-state-and-future-of-reversing-flutte
r-apps.

[44] Build38. 2021. 5 Benefits of using Mobile ID Wallets and use-cases.
(November 2021). Retrieved 06/02/2024 from https://build38.com/5
-benefits-to-use-mobile-id-wallet-and-use-cases/.

[45] Bundesministerium fürWirtschaft und Klimaschutz. 2020. ONCE -On-
line einfach anmelden! (January 2020). Retrieved 01/24/2024 from htt
ps://www.digitale-technologien.de/DT/Redaktion/DE/Standardartikel
/SchaufensterSichereDigIdentProjekte/sdi-projekt_once.html.

[46] Ran Canetti and Susan Hohenberger. 2007. Chosen-Ciphertext Secure
ProxyRe-Encryption. InProceedings of the 14th ACMConference on Com-
puter and Communications Security (CCS ’07). ACM, Alexandria, Virginia,
USA, pp. 185–194. DOI: 10.1145/1315245.1315269.

[47] Luca Casati and Andrea Visconti. 2018. The Dangers of Rooting: Data
Leakage Detection in Android Applications.Mobile Information Systems,
2018, (February 2018). DOI: 10.1155/2018/6020461.

https://developer.android.com/topic/security/risks/tapjacking
https://developer.android.com/topic/security/risks/tapjacking
https://github.com/akumaigorodski/wallet
https://github.com/akumaigorodski/wallet
https://play.google.com/store/apps/details?id=com.attidomobile.passwallet
https://play.google.com/store/apps/details?id=com.attidomobile.passwallet
https://github.com/ax/apk.sh
https://github.com/beemdevelopment/Aegis
https://github.com/beemdevelopment/Aegis/blob/efd8e2d9ff25f59e3d4bcaab664641b0e45761e4/README.md
https://github.com/beemdevelopment/Aegis/blob/efd8e2d9ff25f59e3d4bcaab664641b0e45761e4/README.md
https://github.com/beemdevelopment/Aegis/blob/efd8e2d9ff25f59e3d4bcaab664641b0e45761e4/README.md
https://github.com/bitcoin-wallet/bitcoin-wallet
https://github.com/bitcoin-wallet/bitcoin-wallet
https://github.com/bitpay/wallet
https://github.com/Blockstream/green_android/blob/3c861f5752a8db586ab81142d0e559bb84c6d326/green/src/main/java/com/blockstream/green/database/AppDatabase.kt
https://github.com/Blockstream/green_android/blob/3c861f5752a8db586ab81142d0e559bb84c6d326/green/src/main/java/com/blockstream/green/database/AppDatabase.kt
https://github.com/Blockstream/green_android/blob/3c861f5752a8db586ab81142d0e559bb84c6d326/green/src/main/java/com/blockstream/green/database/AppDatabase.kt
https://github.com/Blockstream/green_android/blob/3c861f5752a8db586ab81142d0e559bb84c6d326/green/src/main/java/com/blockstream/green/database/WalletDao.kt
https://github.com/Blockstream/green_android/blob/3c861f5752a8db586ab81142d0e559bb84c6d326/green/src/main/java/com/blockstream/green/database/WalletDao.kt
https://github.com/Blockstream/green_android/blob/3c861f5752a8db586ab81142d0e559bb84c6d326/green/src/main/java/com/blockstream/green/database/WalletDao.kt
https://github.com/Blockstream/green_android
https://github.com/Blockstream/green_android
https://www.guardsquare.com/blog/current-state-and-future-of-reversing-flutter-apps
https://www.guardsquare.com/blog/current-state-and-future-of-reversing-flutter-apps
https://www.guardsquare.com/blog/current-state-and-future-of-reversing-flutter-apps
https://build38.com/5-benefits-to-use-mobile-id-wallet-and-use-cases/
https://build38.com/5-benefits-to-use-mobile-id-wallet-and-use-cases/
https://www.digitale-technologien.de/DT/Redaktion/DE/Standardartikel/SchaufensterSichereDigIdentProjekte/sdi-projekt_once.html
https://www.digitale-technologien.de/DT/Redaktion/DE/Standardartikel/SchaufensterSichereDigIdentProjekte/sdi-projekt_once.html
https://www.digitale-technologien.de/DT/Redaktion/DE/Standardartikel/SchaufensterSichereDigIdentProjekte/sdi-projekt_once.html
https://doi.org/10.1145/1315245.1315269
https://doi.org/10.1155/2018/6020461

Bibliography 69

[48] Charles Guillemet. 2024. ScalabilityWar, Data Availability, Account Ab-
straction: Exploring Crypto’s “Broadband Moment”. (January 2024).
Retrieved 04/22/2024 from https://www.ledger.com/blog-scalabilit
y-war-account-abstraction-data-availability-exploring-cryptos-br
oadband-moment.

[49] Yoonjung Choi, Woonghee Lee, and Junbeom Hur. 2024. PhishinWeb-
View: Analysis of Anti-Phishing Entities in Mobile Apps with WebView
Targeted Phishing. In Proceedings of the ACM on Web Conference 2024
(WWW ’24). ACM, Singapore, Singapore, pp. 1923–1932. DOI: 10.1145/3
589334.3645708.

[50] ClassEditor. 2004. Java Class File Editor. Retrieved 09/26/2023 from ht
tps://classeditor.sourceforge.net/.

[51] Coinbase. 2024. Toshi: Ethereum Wallet. (April 2024). Retrieved
04/25/2024 from https : / / play . google . com / store / apps / details ? id
=org.toshi.

[52] Connor Tumbleson. 2023. Apktool. (September 2023). Retrieved
09/26/2023 from https://apktool.org/.

[53] Andrea Continella, Yanick Fratantonio, Martina Lindorfer, Alessan-
dro Puccetti, Ali Zand, Christopher Kruegel, and Giovanni Vigna. 2017.
Obfuscation-Resilient Privacy Leak Detection forMobile Apps Through
Differential Analysis. In NDSS. Volume 17. San Diego, CA, USA, pp. 10–
14722. DOI: 10.14722/ndss.2017.23465.

[54] Cybersecurity Education Guides. [n. d.] Identity and Access Control in
Information and Network Security. Retrieved 04/22/2024 from https:
//www.cybersecurityeducationguides.org/access-control/.

[55] Isai Damier, Kevin Chyn, and Curtis Belmonte. 2019. One Biometric API
Over all Android. (October 2019). Retrieved 04/26/2023 from https://a
ndroid-developers.googleblog.com/2019/10/one-biometric-api-over
-all-android.html.

[56] Daniel Sogl. 2023. Awesome Cordova Plugins. (April 2023). Retrieved
06/23/2023 from https://github.com/danielsogl/awesome-cordova
-plugins.

[57] Digital Credentials Consortium. 2024. Learner CredentialWallet Github
Repository. (January 2024). Retrieved 04/22/2024 from https://github
.com/digitalcredentials/learner-credential-wallet.

[58] Verena Distler, Matthias Fassl, Hana Habib, Katharina Krombholz,
Gabriele Lenzini, Carine Lallemand, Lorrie Faith Cranor, and Vincent
Koenig. 2021. A Systematic Literature Review of Empirical Methods
and Risk Representation in Usable Privacy and Security Research. ACM
Trans. Comput.-Hum. Interact., 28, 6, Article 43, (December 2021), 50
pages. DOI: 10.1145/3469845.

[59] Dock. 2024. Digital Identity: The Key to Unlocking the Future of Work.
(June 2024). Retrieved 07/05/2024 from https://www.dock.io/post/dig
ital-identity.

[60] DocuSign. 2023. The Top Trends in Identity Verification Technology.
(June 2023). Retrieved 04/22/2024 from https://www.docusign.com
/blog/top-trends-identity-verification-technology.

[61] Axel Domeyer, Mike McCarthy, Simon Pfeiffer, and Gundbert Scherf.
2020. How governments can deliver on the promise of digital ID. (Au-
gust 2020). Retrieved 04/25/2024 from https://www.mckinsey.com/in
dustries/public-sector/our-insights/how-governments-can-deliver
-on-the-promise-of-digital-id.

https://www.ledger.com/blog-scalability-war-account-abstraction-data-availability-exploring-cryptos-broadband-moment
https://www.ledger.com/blog-scalability-war-account-abstraction-data-availability-exploring-cryptos-broadband-moment
https://www.ledger.com/blog-scalability-war-account-abstraction-data-availability-exploring-cryptos-broadband-moment
https://doi.org/10.1145/3589334.3645708
https://doi.org/10.1145/3589334.3645708
https://classeditor.sourceforge.net/
https://classeditor.sourceforge.net/
https://play.google.com/store/apps/details?id=org.toshi
https://play.google.com/store/apps/details?id=org.toshi
https://apktool.org/
https://doi.org/10.14722/ndss.2017.23465
https://www.cybersecurityeducationguides.org/access-control/
https://www.cybersecurityeducationguides.org/access-control/
https://android-developers.googleblog.com/2019/10/one-biometric-api-over-all-android.html
https://android-developers.googleblog.com/2019/10/one-biometric-api-over-all-android.html
https://android-developers.googleblog.com/2019/10/one-biometric-api-over-all-android.html
https://github.com/danielsogl/awesome-cordova-plugins
https://github.com/danielsogl/awesome-cordova-plugins
https://github.com/digitalcredentials/learner-credential-wallet
https://github.com/digitalcredentials/learner-credential-wallet
https://doi.org/10.1145/3469845
https://www.dock.io/post/digital-identity
https://www.dock.io/post/digital-identity
https://www.docusign.com/blog/top-trends-identity-verification-technology
https://www.docusign.com/blog/top-trends-identity-verification-technology
https://www.mckinsey.com/industries/public-sector/our-insights/how-governments-can-deliver-on-the-promise-of-digital-id
https://www.mckinsey.com/industries/public-sector/our-insights/how-governments-can-deliver-on-the-promise-of-digital-id
https://www.mckinsey.com/industries/public-sector/our-insights/how-governments-can-deliver-on-the-promise-of-digital-id

Bibliography 70

[62] Electrum Technologies GmbH. 2024. Electrum Github Repository.
(April 2024). Retrieved 04/25/2024 from https://github.com/spesmilo
/electrum.

[63] European Commission. [n. d.] European Digital Identity. Retrieved
04/25/2024 from https://commission.europa.eu/strategy-and-poli
cy/priorities-2019-2024/europe-fit-digital-age/european-digital-id
entity_en.

[64] Nathan S. Evans, Azzedine Benameur, and Yun Shen. 2015. All your Root
Checks are Belong to Us: The Sad State of Root Detection. In Proceed-
ings of the 13th ACM International Symposium on Mobility Management
andWireless Access (MobiWac ’15). ACM,Cancun,Mexico, pp. 81–88.DOI:
10.1145/2810362.2810364.

[65] Evernym. 2023. Evernym GitLab Repository. (March 2023). Retrieved
04/25/2024 from https://gitlab.com/evernym.

[66] Federal Trade Commission. 2013. Fighting Identity Theft with the
Red Flags Rule: A How-To Guide for Business. (May 2013). Retrieved
04/22/2024 from https://www.ftc.gov/business-guidance/resources/f
ighting-identity-theft-red-flags-rule-how-guide-business.

[67] Hyperledger Foundation. 2024. Hyperledger Projects. Retrieved
07/08/2024 from https://www.hyperledger.org/projects.

[68] Fraud.com. 2021. Digital Wallet Fraud: How to Protect Your Business.
(November 2021). Retrieved 04/22/2024 from https://www.fraud.com
/post/digital-wallet-fraud.

[69] GeeksforGeeks. 2024. Android Architecture. (May 2024). Retrieved
04/10/2024 from https://www.geeksforgeeks.org/android-architectur
e/.

[70] Sérgio Manuel Nóbrega Gonçalves, Alessandro Tomasi, Andrea
Bisegna, Giulio Pellizzari, and Silvio Ranise. 2020. Verifiable Con-
tracting - A Use Case for Onboarding and Contract Offering in Financial
Services with eIDAS and Verifiable Credentials. In Computer Security
- ESORICS 2020 International Workshops, DETIPS, DeSECSys, MPS, and
SPOSE, Guildford, UK, September 17-18, 2020, Revised Selected Papers
(LNCS, volume 12580). Ioana Boureanu, Constantin Catalin Dragan,
Mark Manulis, Thanassis Giannetsos, Christoforos Dadoyan, Panagi-
otis Gouvas, Roger A. Hallman, Shujun Li, Victor Chang, Frank Pallas,
Jörg Pohle, and M. Angela Sasse, (Eds.) Springer, pp. 133–144. DOI:
10.1007/978-3-030-66504-3_8.

[71] Google. [n. d.] Application fundamentals. Retrieved 07/08/2024 from h
ttps://developer.android.com/guide/components/fundamentals.

[72] Google. 2023. D8 dexer and R8 shrinker. Retrieved 09/05/2023 from ht
tps://r8.googlesource.com/r8/.

[73] Google. 2024. Dart. Retrieved 07/08/2024 from https://github.com/dar
t-lang.

[74] Google. 2023. Flutter architectural overview. (June 2023). Retrieved
09/05/2023 from https: / /docs . flutter .dev/resources/architectural-
overview.

[75] Google. 2023. Flutter Homepage. (June 2023). Retrieved 06/23/2023
from https://flutter.dev.

[76] Google LLC. 2024. Google Wallet. (April 2024). Retrieved 04/25/2024
from https://play.google.com/store/apps/details?id=com.google.a
ndroid.apps.walletnfcrel.

https://github.com/spesmilo/electrum
https://github.com/spesmilo/electrum
https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/europe-fit-digital-age/european-digital-identity_en
https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/europe-fit-digital-age/european-digital-identity_en
https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/europe-fit-digital-age/european-digital-identity_en
https://doi.org/10.1145/2810362.2810364
https://gitlab.com/evernym
https://www.ftc.gov/business-guidance/resources/fighting-identity-theft-red-flags-rule-how-guide-business
https://www.ftc.gov/business-guidance/resources/fighting-identity-theft-red-flags-rule-how-guide-business
https://www.hyperledger.org/projects
https://www.fraud.com/post/digital-wallet-fraud
https://www.fraud.com/post/digital-wallet-fraud
https://www.geeksforgeeks.org/android-architecture/
https://www.geeksforgeeks.org/android-architecture/
https://doi.org/10.1007/978-3-030-66504-3_8
https://developer.android.com/guide/components/fundamentals
https://developer.android.com/guide/components/fundamentals
https://r8.googlesource.com/r8/
https://r8.googlesource.com/r8/
https://github.com/dart-lang
https://github.com/dart-lang
https://docs.flutter.dev/resources/architectural-overview
https://docs.flutter.dev/resources/architectural-overview
https://flutter.dev
https://play.google.com/store/apps/details?id=com.google.android.apps.walletnfcrel
https://play.google.com/store/apps/details?id=com.google.android.apps.walletnfcrel

Bibliography 71

[77] Guardsquare. 2017. NewAndroid vulnerability allows attackers tomod-
ify apps without affecting their signatures. (November 2017). Retrieved
05/24/2023 from https://www.guardsquare.com/blog/new-android-v
ulnerability-allows-attackers-to-modify-apps-without-affecting-t
heir-signatures-guardsquare.

[78] JD-GUI contributors. 2019. Java Decompiler. (December 2019). Re-
trieved 09/26/2023 from http://java-decompiler.github.io/.

[79] Ruth Halperin and James Backhouse. 2012. Risk, trust and eID: Explor-
ing public perceptions of digital identity systems. First Monday, 17, 4,
(April 2012). DOI: 10.5210/fm.v17i4.3867.

[80] Felix Hoops and Florian Matthes. 2024. A Universal System for OpenID
Connect Sign-ins with Verifiable Credentials and Cross-Device Flow.
CoRR. DOI: 10.48550/ARXIV.2401.09488. arXiv: 2401.09488.

[81] HorizontalSystems. 2024. unstoppable-wallet-android Github Repos-
itory. (April 2024). Retrieved 04/25/2024 from https://github.com/hor
izontalsystems/unstoppable-wallet-android.

[82] HorizontalSystems. 2023. unstoppable-wallet-android Github Repos-
itory: AppDatabase.kt. (January 2023). Retrieved 05/26/2023 from http
s://github.com/horizontalsystems/unstoppable-wallet-android/blob
/ae2fcf3f8110fe4a8468c6d4948e26efe03488b9/app/src/main/java/io
/horizontalsystems/bankwallet/core/storage/AppDatabase.kt.

[83] HorizontalSystems. 2022. unstoppable-wallet-android Github Repos-
itory: CipherWrapper.kt. (May 2022). Retrieved 05/26/2023 from https
://github.com/horizontalsystems/unstoppable-wallet-android/blob
/ae2fcf3f8110fe4a8468c6d4948e26efe03488b9/core/src/main/java/io
/horizontalsystems/core/security/CipherWrapper.kt.

[84] iComply Investor Services Inc. 2024. Overcoming Challenges in Digital
Identity Verification for Enhanced Security. (January 2024). Retrieved
04/22/2024 from https://icomplyis.com/icomply-blog/overcoming-c
hallenges-in-digital-identity-verification-for-enhanced-security/.

[85] Idemia. 2023. What is Mobile ID? (November 2023). Retrieved
04/22/2024 from https://www.idemia.com/insights/what-mobile-id.

[86] Identity Defined Security Alliance. 2019. THE STATE OF IDENTITY:
HOWSECURITY TEAMSARE ADDRESSINGRISK.White Paper. (Decem-
ber 2019). Retrieved 04/22/2024 from https://www.idsalliance.org/wh
ite-paper/identity-and-access-management-the-stakeholder-pers
pective/.

[87] Institute of Networks and Security. 2023. Christian Doppler Labora-
tory for Private Digital Authentication in the Physical World. Retrieved
05/19/2023 from https://www.digidow.eu/.

[88] JesusFreke. 2021. Home. (March 2021). Retrieved 07/08/2024 fromhttp
s://github.com/JesusFreke/smali/wiki.

[89] JetBrains. 2024. Kotlin: Getting Started. (June 2024). Retrieved
07/08/2024 from https : / / github . com / JetBrains / kotlin - web - site
/blob/c173c110d60b7684364d47ab9f38ac96e1e2b688/docs/topics/get
ting-started.md.

[90] John Wu (topjohnwu). 2023. Magisk. Retrieved 05/24/2023 from https:
//topjohnwu.github.io/Magisk/.

[91] Matt Johnston, Manoj Ahuje, Stephen VanVaerenbergh, and Chad Yo-
der. 2023. Compromising Identity Provider Federation. (November
2023). Retrieved 04/22/2024 from https://www.crowdstrike.com/blog
/compromising-identity-provider-federation/.

https://www.guardsquare.com/blog/new-android-vulnerability-allows-attackers-to-modify-apps-without-affecting-their-signatures-guardsquare
https://www.guardsquare.com/blog/new-android-vulnerability-allows-attackers-to-modify-apps-without-affecting-their-signatures-guardsquare
https://www.guardsquare.com/blog/new-android-vulnerability-allows-attackers-to-modify-apps-without-affecting-their-signatures-guardsquare
http://java-decompiler.github.io/
https://doi.org/10.5210/fm.v17i4.3867
https://doi.org/10.48550/ARXIV.2401.09488
https://arxiv.org/abs/2401.09488
https://github.com/horizontalsystems/unstoppable-wallet-android
https://github.com/horizontalsystems/unstoppable-wallet-android
https://github.com/horizontalsystems/unstoppable-wallet-android/blob/ae2fcf3f8110fe4a8468c6d4948e26efe03488b9/app/src/main/java/io/horizontalsystems/bankwallet/core/storage/AppDatabase.kt
https://github.com/horizontalsystems/unstoppable-wallet-android/blob/ae2fcf3f8110fe4a8468c6d4948e26efe03488b9/app/src/main/java/io/horizontalsystems/bankwallet/core/storage/AppDatabase.kt
https://github.com/horizontalsystems/unstoppable-wallet-android/blob/ae2fcf3f8110fe4a8468c6d4948e26efe03488b9/app/src/main/java/io/horizontalsystems/bankwallet/core/storage/AppDatabase.kt
https://github.com/horizontalsystems/unstoppable-wallet-android/blob/ae2fcf3f8110fe4a8468c6d4948e26efe03488b9/app/src/main/java/io/horizontalsystems/bankwallet/core/storage/AppDatabase.kt
https://github.com/horizontalsystems/unstoppable-wallet-android/blob/ae2fcf3f8110fe4a8468c6d4948e26efe03488b9/core/src/main/java/io/horizontalsystems/core/security/CipherWrapper.kt
https://github.com/horizontalsystems/unstoppable-wallet-android/blob/ae2fcf3f8110fe4a8468c6d4948e26efe03488b9/core/src/main/java/io/horizontalsystems/core/security/CipherWrapper.kt
https://github.com/horizontalsystems/unstoppable-wallet-android/blob/ae2fcf3f8110fe4a8468c6d4948e26efe03488b9/core/src/main/java/io/horizontalsystems/core/security/CipherWrapper.kt
https://github.com/horizontalsystems/unstoppable-wallet-android/blob/ae2fcf3f8110fe4a8468c6d4948e26efe03488b9/core/src/main/java/io/horizontalsystems/core/security/CipherWrapper.kt
https://icomplyis.com/icomply-blog/overcoming-challenges-in-digital-identity-verification-for-enhanced-security/
https://icomplyis.com/icomply-blog/overcoming-challenges-in-digital-identity-verification-for-enhanced-security/
https://www.idemia.com/insights/what-mobile-id
https://www.idsalliance.org/white-paper/identity-and-access-management-the-stakeholder-perspective/
https://www.idsalliance.org/white-paper/identity-and-access-management-the-stakeholder-perspective/
https://www.idsalliance.org/white-paper/identity-and-access-management-the-stakeholder-perspective/
https://www.digidow.eu/
https://github.com/JesusFreke/smali/wiki
https://github.com/JesusFreke/smali/wiki
https://github.com/JetBrains/kotlin-web-site/blob/c173c110d60b7684364d47ab9f38ac96e1e2b688/docs/topics/getting-started.md
https://github.com/JetBrains/kotlin-web-site/blob/c173c110d60b7684364d47ab9f38ac96e1e2b688/docs/topics/getting-started.md
https://github.com/JetBrains/kotlin-web-site/blob/c173c110d60b7684364d47ab9f38ac96e1e2b688/docs/topics/getting-started.md
https://topjohnwu.github.io/Magisk/
https://topjohnwu.github.io/Magisk/
https://www.crowdstrike.com/blog/compromising-identity-provider-federation/
https://www.crowdstrike.com/blog/compromising-identity-provider-federation/

Bibliography 72

[92] Kivy Community. 2023. Kivy: The Open Source Python App Develop-
ment Framework. (June 2023). Retrieved 06/23/2023 from https : / /ki
vy.org/.

[93] Anna-MagdalenaKrauß, SandraKostic, andRachelle A. Sellung. 2023. A
moreUser-FriendlyDigitalWallet?User Scenarios of a FutureWallet. In
Open Identity Summit 2023, Heilbronn, Germany, June 15-16, 2023 (LNI).
Heiko Roßnagel, Christian H. Schunck, and Jochen Günther, (Eds.)
Gesellschaft für Informatik e.V. DOI: 10.18420/OID2023_06.

[94] Miroslaw Kutylowski, Lucjan Hanzlik, and Kamil Kluczniak. 2016.
Pseudonymous Signature on eIDAS Token - Implementation Based
Privacy Threats. In Information Security and Privacy - 21st Australasian
Conference, ACISP 2016, Melbourne, VIC, Australia, July 4-6, 2016, Pro-
ceedings, Part II (LNCS, volume 9723). Joseph K. Liu and Ron Steinfeld,
(Eds.) Springer, pp. 467–477. DOI: 10.1007/978-3-319-40367-0_31.

[95] Ethan P Larsen, Arjun H Rao, and Farzan Sasangohar. 2020. Under-
standing the scopeofdowntime threats:A scoping reviewofdowntime-
focused literature and news media. Health Informatics Journal, 26, 4,
2660–2672. DOI: 10.1177/1460458220918539.

[96] Lauren Hendrickson. 2023. The Importance of Interoperability in Digi-
tal Identity. (September 2023). Retrieved 04/22/2024 from https://ww
w.identity.com/the-importance-of-interoperability-in-digital-ident
ity/.

[97] LSPosed. 2023. LSPosed Github Repository. (September 2023). Re-
trieved 09/26/2023 from https://github.com/LSPosed/LSPosed.

[98] Massachusetts Institute of Technology. 2023. Learner Credential Wal-
let. Retrieved 05/19/2023 from https://lcw.app.

[99] RenéMayrhofer, Jeffrey Vander Stoep, Chad Brubaker, and Nick Krale-
vich. 2021. The Android PlatformSecurityModel.ACMTrans. Priv. Secur.,
24, 3, Article 19, (April 2021), 35 pages. DOI: 10.1145/3448609.

[100] CarloMazzocca, Abbas Acar, Selcuk Uluagac, RebeccaMontanari, Paolo
Bellavista, andMauroConti. 2024.ASurveyonDecentralized Identifiers
and Verifiable Credentials. CoRR. DOI: 10 .48550/ARXIV .2402 .02455.
arXiv: 2402.02455.

[101] Michael Troger. 2024. GreenPass Android Github Repository. (April
2024). Retrieved 04/25/2024 from https://github.com/michaeltroge
r/greenpass-android.

[102] Microsoft Corporation. 2024. Microsoft Authenticator. (April 2024).
Retrieved 04/25/2024 from https://play.google.com/store/apps/det
ails?id=com.azure.authenticator.

[103] Microsoft Corporation. 2024. Microsoft Entra Verified ID. (April 2024).
Retrieved 04/25/2024 from https://www.microsoft.com/en-us/securit
y/business/identity-access/microsoft-entra-verified-id.

[104] Mitmproxy Project. 2023. Mitmproxy. (September 2023). Retrieved
09/26/2023 from https://mitmproxy.org/.

[105] Mobile Security Framework. 2023. Mobile Security Framework.
(September 2023). Retrieved 09/26/2023 from https : / /mobsf . githu
b.io/Mobile-Security-Framework-MobSF/.

[106] Mozilla. 2024. JavaScript. Retrieved 07/08/2024 from https://develope
r.mozilla.org/en-US/docs/Web/JavaScript.

[107] Niklas Merz. 2022. Cordova Plugin Fingerprint All-In-One. (November
2022). Retrieved 06/23/2023 from https://github.com/NiklasMerz/cor
dova-plugin-fingerprint-aio.

https://kivy.org/
https://kivy.org/
https://doi.org/10.18420/OID2023_06
https://doi.org/10.1007/978-3-319-40367-0_31
https://doi.org/10.1177/1460458220918539
https://www.identity.com/the-importance-of-interoperability-in-digital-identity/
https://www.identity.com/the-importance-of-interoperability-in-digital-identity/
https://www.identity.com/the-importance-of-interoperability-in-digital-identity/
https://github.com/LSPosed/LSPosed
https://lcw.app
https://doi.org/10.1145/3448609
https://doi.org/10.48550/ARXIV.2402.02455
https://arxiv.org/abs/2402.02455
https://github.com/michaeltroger/greenpass-android
https://github.com/michaeltroger/greenpass-android
https://play.google.com/store/apps/details?id=com.azure.authenticator
https://play.google.com/store/apps/details?id=com.azure.authenticator
https://www.microsoft.com/en-us/security/business/identity-access/microsoft-entra-verified-id
https://www.microsoft.com/en-us/security/business/identity-access/microsoft-entra-verified-id
https://mitmproxy.org/
https://mobsf.github.io/Mobile-Security-Framework-MobSF/
https://mobsf.github.io/Mobile-Security-Framework-MobSF/
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://github.com/NiklasMerz/cordova-plugin-fingerprint-aio
https://github.com/NiklasMerz/cordova-plugin-fingerprint-aio

Bibliography 73

[108] Noetic Cyber. 2024. The Hidden Threat: Understanding the Identity At-
tack Surface. (March 2024). Retrieved 04/22/2024 from https://noeticc
yber.com/understanding-the-identity-attack-surface/.

[109] David Nuñez, Isaac Agudo, and Javier Lopez. 2017. Proxy Re-
Encryption: Analysis of constructions and its application to secure
access delegation. Journal of Network and Computer Applications, 87,
(June 2017), 193–209. DOI: 10.1016/j.jnca.2017.03.005.

[110] Oracle. 2024. JAR File Overview. Retrieved 07/08/2024 from https://do
cs.oracle.com/javase/8/docs/technotes/guides/jar/jarGuide.html.

[111] Oracle. 2023. jarsigner. Retrieved 05/22/2023 from https://docs.oracle
.com/javase/8/docs/technotes/tools/unix/jarsigner.html.

[112] Oracle. 2023. Signed JAR File. Retrieved 05/09/2023 from https://docs
.oracle.com/javase/8/docs/technotes/guides/jar/jar.html#Signed_JAR
_File.

[113] Oracle. 2006. Summary of Tools for Java Platform Security. (July 2006).
Retrieved 05/22/2023 from https://docs.oracle.com/javase/8/docs/tec
hnotes/guides/security/SecurityToolsSummary.html.

[114] Oracle. 2024. The Java Language Environment. Retrieved 07/08/2024
from https://www.oracle.com/java/technologies/introduction- to-
java.html.

[115] Oracle. 2013. The Java® Virtual Machine Specification - Chapter 4. The
class File Format. (February2013). Retrieved07/08/2024 fromhttps://d
ocs.oracle.com/javase/specs/jvms/se7/html/jvms-4.html.

[116] David Ortinau, David Britch, Julius Zint, Craig Dunn, Nick Schonning,
and Alex Soto. 2017. Creating Bindings with Objective Sharpie. (October
2017). Retrieved 03/05/2024 from https://learn.microsoft.com/en-us
/xamarin/cross-platform/macios/binding/objective-sharpie/.

[117] Stack Overflow. 2020. Difference between AAR, JAR, DEX, APK in An-
droid. (March 2020). Retrieved 07/08/2024 from https://stackoverflow
.com/questions/33533370/difference-between-aar-jar-dex-apk-in-
android.

[118] Passes Alliance. 2024. Wallet Alliance - Passbook Wallet. (April 2024).
Retrieved 04/25/2024 from https://play.google.com/store/apps/detail
s?id=com.passesalliance.wallet.

[119] Patrick Ahlbrecht. 2023. Raccoon Website. (June 2023). Retrieved
08/17/2023 from https://raccoon.onyxbits.de/.

[120] Philipp Crocoll. 2024. KeePass2Android Github Repository. (April
2024). Retrieved 04/25/2024 from https : / / github . com / PhilippC / k
eepass2android.

[121] PwCLuxembourg. 2022. EUDigital Identity:Why itmakes sense and the
challenges ahead. (February 2022). Retrieved 04/25/2024 from https:
//blog.pwc.lu/eu-digital-identity-why-it-makes-sense-and-the-ch
allenges-ahead/.

[122] pxb1988. 2023. dex2jar. (September 2023). Retrieved 09/26/2023 from
https://github.com/pxb1988/dex2jar.

[123] Raiffeisen Österreich. 2024. Mein ELBA-App. (April 2024). Retrieved
04/25/2024 from https://play.google.com/store/apps/details?id=at
.rsg.pfp.

[124] RohanVaidya. [n. d.] Android Architecture: Layers and Important Com-
ponents. Retrieved 04/10/2024 from https://www.elluminatiinc.com/a
ndroid-architecture/.

https://noeticcyber.com/understanding-the-identity-attack-surface/
https://noeticcyber.com/understanding-the-identity-attack-surface/
https://doi.org/10.1016/j.jnca.2017.03.005
https://docs.oracle.com/javase/8/docs/technotes/guides/jar/jarGuide.html
https://docs.oracle.com/javase/8/docs/technotes/guides/jar/jarGuide.html
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/jarsigner.html
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/jarsigner.html
https://docs.oracle.com/javase/8/docs/technotes/guides/jar/jar.html#Signed_JAR_File
https://docs.oracle.com/javase/8/docs/technotes/guides/jar/jar.html#Signed_JAR_File
https://docs.oracle.com/javase/8/docs/technotes/guides/jar/jar.html#Signed_JAR_File
https://docs.oracle.com/javase/8/docs/technotes/guides/security/SecurityToolsSummary.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/SecurityToolsSummary.html
https://www.oracle.com/java/technologies/introduction-to-java.html
https://www.oracle.com/java/technologies/introduction-to-java.html
https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-4.html
https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-4.html
https://learn.microsoft.com/en-us/xamarin/cross-platform/macios/binding/objective-sharpie/
https://learn.microsoft.com/en-us/xamarin/cross-platform/macios/binding/objective-sharpie/
https://stackoverflow.com/questions/33533370/difference-between-aar-jar-dex-apk-in-android
https://stackoverflow.com/questions/33533370/difference-between-aar-jar-dex-apk-in-android
https://stackoverflow.com/questions/33533370/difference-between-aar-jar-dex-apk-in-android
https://play.google.com/store/apps/details?id=com.passesalliance.wallet
https://play.google.com/store/apps/details?id=com.passesalliance.wallet
https://raccoon.onyxbits.de/
https://github.com/PhilippC/keepass2android
https://github.com/PhilippC/keepass2android
https://blog.pwc.lu/eu-digital-identity-why-it-makes-sense-and-the-challenges-ahead/
https://blog.pwc.lu/eu-digital-identity-why-it-makes-sense-and-the-challenges-ahead/
https://blog.pwc.lu/eu-digital-identity-why-it-makes-sense-and-the-challenges-ahead/
https://github.com/pxb1988/dex2jar
https://play.google.com/store/apps/details?id=at.rsg.pfp
https://play.google.com/store/apps/details?id=at.rsg.pfp
https://www.elluminatiinc.com/android-architecture/
https://www.elluminatiinc.com/android-architecture/

Bibliography 74

[125] rovo89. 2023. XposedBridge Wiki. (September 2023). Retrieved
09/26/2023 from https://github.com/rovo89/XposedBridge/wiki.

[126] Scott Alexander-Bown. 2021. RootBeer Github Repository. (November
2021). Retrieved 01/24/2024 from https://github.com/scottyab/rootbe
er.

[127] shoey63 on xda-developers.com. 2022. Comment 105 inThread: [INFO]
Play Integrity API - replacement for SafetyNet. (November 2022). Re-
trieved 05/26/2023 from https://forum.xda-developers.com/t/info-p
lay-integrity-api-replacement-for-safetynet.4479337/page-6#post
-87663135.

[128] Vasily Sidorov and Wee Keong Ng. 2015. Transparent Data Encryption
for Data-in-Use and Data-at-Rest in a Cloud-Based Database-as-a-
Service Solution. In 2015 IEEEWorld Congress on Services. IEEE Computer
Society, New York, NY, USA, pp. 221–228. DOI: 10.1109/SERVICES.2015
.40.

[129] skylot. 2023. jadx. (September 2023). Retrieved 09/26/2023 from https
://github.com/skylot/jadx.

[130] Manu Sporny, Dave Longley, and David Chadwick. 2021. Verifiable Cre-
dentials Data Model v1.1. W3C Recommendation. (June 2021). Retrieved
10/24/2023 from https://www.w3.org/TR/vc-data-model/.

[131] SQLite. 2020. SQLite Release 3.32.2 On 2020-06-04. (June 2020). Re-
trieved 05/05/2023 from https://www.sqlite.org/releaselog/3_32_2.h
tml.

[132] SQLite. 2007. SQLite Release 3.4.0 On 2007-06-18. (June 2007). Re-
trieved 05/04/2023 from https://www.sqlite.org/releaselog/3_4_0
.html.

[133] Tap2Pay. 2024. WalletPasses - Passbook Wallet. (February 2024). Re-
trieved 04/25/2024 from https://play.google.com/store/apps/details?i
d=io.walletpasses.android.

[134] The Apache Software Foundation. 2023. Apache Cordova Overview. Re-
trieved 06/23/2023 from https://cordova.apache.org/docs/en/10.x/gui
de/overview/.

[135] The kernel development community. 2023. fs-verity: read-only file-
based authenticity protection. Retrieved 05/23/2023 from https://ww
w.kernel.org/doc/html/latest/filesystems/fsverity.html.

[136] Thekernel development community. 2023. SeccompBPF (SECureCOM-
Puting with filters). Retrieved 09/26/2023 from https://www.kernel.or
g/doc/html/latest/userspace-api/seccomp_filter.html.

[137] Mary Theofanos. 2020. Is Usable Security an Oxymoron? Computer, 53,
2, 71–74. DOI: 10.1109/MC.2019.2954075.

[138] Tony Smith. 2005. DVD Jon: buy DRM-less tracks from Apple iTunes.
(March 2005). Retrieved 10/24/2023 from https://www.theregister.co
m/2005/03/18/itunes_pymusique.

[139] Transmit Security. [n. d.] Simplify and Secure Account Recovery. Re-
trieved 04/22/2024 from https://transmitsecurity.com/solutions/ac
count-recovery.

[140] Trulioo. 2024. What Is Digital Identity Verification? Retrieved
04/22/2024 from https : / /www . trulioo . com/ identity- verification-
use-cases/digital-identity-verification.

[141] Trust Wallet. 2024. Trust: Crypto & Bitcoin Wallet. (April 2024). Re-
trieved 04/25/2024 from https://play.google.com/store/apps/detail
s?id=com.wallet.crypto.trustapp.

https://github.com/rovo89/XposedBridge/wiki
https://github.com/scottyab/rootbeer
https://github.com/scottyab/rootbeer
https://forum.xda-developers.com/t/info-play-integrity-api-replacement-for-safetynet.4479337/page-6#post-87663135
https://forum.xda-developers.com/t/info-play-integrity-api-replacement-for-safetynet.4479337/page-6#post-87663135
https://forum.xda-developers.com/t/info-play-integrity-api-replacement-for-safetynet.4479337/page-6#post-87663135
https://doi.org/10.1109/SERVICES.2015.40
https://doi.org/10.1109/SERVICES.2015.40
https://github.com/skylot/jadx
https://github.com/skylot/jadx
https://www.w3.org/TR/vc-data-model/
https://www.sqlite.org/releaselog/3_32_2.html
https://www.sqlite.org/releaselog/3_32_2.html
https://www.sqlite.org/releaselog/3_4_0.html
https://www.sqlite.org/releaselog/3_4_0.html
https://play.google.com/store/apps/details?id=io.walletpasses.android
https://play.google.com/store/apps/details?id=io.walletpasses.android
https://cordova.apache.org/docs/en/10.x/guide/overview/
https://cordova.apache.org/docs/en/10.x/guide/overview/
https://www.kernel.org/doc/html/latest/filesystems/fsverity.html
https://www.kernel.org/doc/html/latest/filesystems/fsverity.html
https://www.kernel.org/doc/html/latest/userspace-api/seccomp_filter.html
https://www.kernel.org/doc/html/latest/userspace-api/seccomp_filter.html
https://doi.org/10.1109/MC.2019.2954075
https://www.theregister.com/2005/03/18/itunes_pymusique
https://www.theregister.com/2005/03/18/itunes_pymusique
https://transmitsecurity.com/solutions/account-recovery
https://transmitsecurity.com/solutions/account-recovery
https://www.trulioo.com/identity-verification-use-cases/digital-identity-verification
https://www.trulioo.com/identity-verification-use-cases/digital-identity-verification
https://play.google.com/store/apps/details?id=com.wallet.crypto.trustapp
https://play.google.com/store/apps/details?id=com.wallet.crypto.trustapp

Bibliography 75

[142] UC Berkeley. [n. d.] Backing Up Your Data. Retrieved 04/22/2024 from
https://security.berkeley.edu/education-awareness/backing-your-da
ta.

[143] US Geological Survey. [n. d.] Backup & Secure. Retrieved 04/22/2024
from https://www.usgs.gov/data-management/backup-secure.

[144] Zap Solutions. 2024. Zap Android Github Repository. (April 2024). Re-
trieved 04/25/2024 from https://github.com/LN-Zap/zap-android.

[145] Zap Solutions, Inc. 2021. zap-androidGithubRepository: PrefsUtil.java.
(December 2021). Retrieved 05/26/2023 from https://github.com/LN-
Zap/zap-android/blob/acffc0ec81320d08c2bd4686991f0d2fa1a26a45
/app/src/main/java/zapsolutions/zap/util/PrefsUtil.java.

https://security.berkeley.edu/education-awareness/backing-your-data
https://security.berkeley.edu/education-awareness/backing-your-data
https://www.usgs.gov/data-management/backup-secure
https://github.com/LN-Zap/zap-android
https://github.com/LN-Zap/zap-android/blob/acffc0ec81320d08c2bd4686991f0d2fa1a26a45/app/src/main/java/zapsolutions/zap/util/PrefsUtil.java
https://github.com/LN-Zap/zap-android/blob/acffc0ec81320d08c2bd4686991f0d2fa1a26a45/app/src/main/java/zapsolutions/zap/util/PrefsUtil.java
https://github.com/LN-Zap/zap-android/blob/acffc0ec81320d08c2bd4686991f0d2fa1a26a45/app/src/main/java/zapsolutions/zap/util/PrefsUtil.java

	Abstract
	Kurzfassung
	Acknowledgements
	Contents
	List of Acronyms
	Introduction
	Larger Project Context
	Objectives and Approach

	Background and Related Work
	Digital Wallets and Data Storage Applications
	Cryptocurrency Wallets
	Payment Wallets
	Ticket Wallets
	Identity Wallets

	Android Architecture
	Linux Kernel
	Hardware Abstraction Layer (HAL)
	Android Runtime (ART)
	Libraries and Android Framework
	Application Layer
	Security Features in Android Architecture
	Inter-Process Communication (IPC) and Intent Messaging

	Used Programming Languages/Technologies
	Java Programming Language
	Kotlin Programming Language
	Java Class File
	Java Archive
	Android Package
	Application Bundles
	Dalvik Executable
	Smali Assembly Language
	Javascript Programming Language
	Dart Programming Language
	App Development Frameworks

	Hyperledger Project

	Requirements and Threats
	Requirements
	Affected Party: Identity Holder
	Affected Party: Identity Verifier
	Affected Party: Identity Issuer

	Threats

	Security Measures in Android
	Tapjacking / UI-Redressing
	Full Occlusion
	Partial Occlusion
	Custom Toasts
	Notification Bubbles
	System Alert Windows
	Cross-Application Embedding

	Sandboxing
	Android 5.0 - API 21
	Android 6.0 - API 23
	Android 8.0 - API 26
	Android 9.0 - API 28
	Android 10.0 - API 29

	KeyStore System
	Android 4.0 - API 14
	Android 4.3 - API 18
	Android 7.0 - API 24
	Android 10 - API 29

	Cryptography
	Biometrics
	APIs
	Usage
	Security

	Databases
	android.database.sqlite
	androidx.room

	Identity Credential API
	Network
	Permissions
	Normal Permissions
	Signature Permissions
	Dangerous Permissions
	Special Permissions
	Recent Changes

	App Signing
	APK Signature Scheme v1
	APK Signature Scheme v2
	APK Signature Scheme v3
	APK Signature Scheme v4
	APK Signature Issues and Vulnerabilities

	Device Protection
	SELinux
	Verified Boot
	File-Based Encryption/Full-Disk Encryption
	Operating System Modifications
	Key Attestation
	Root Detection
	Google Security APIs

	Third-Party Libraries
	SQLCipher
	Google Tink
	Themis

	Security Measure Evaluation Criteria
	Storage Protection
	Network Communication Protection
	User Interface Protection
	Permissions
	Update Policy
	Root Detection
	Reproducibility
	Business Logic in Native Code

	Test Methodology and Tools
	Test Environment
	Toolchain
	Raccoon
	Apktool
	Jadx
	JD-GUI
	Java Class File Editor
	dex2jar
	MITM Proxy
	Xposed
	apk.sh
	Mobile Security Framework (MobSF)

	Evaluation of Existing Wallets and Data Storage Apps
	Evaluated Apps
	ID Wallets
	Ticket Wallets
	PDF Wallets
	Open Crypto Wallets
	Closed Source Crypto Wallets
	Authenticator Apps
	Password Managers
	Banking

	Evaluation Results
	Storage
	Network
	User Interface
	Permissions
	Updates
	Root Detection
	Reproducible
	Native Code

	Results
	Overview
	Best Practices for Wallet Apps
	Security
	Visual Design

	Conclusion
	Bibliography

