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Abstract—Android’s fast-paced development cycles
and the large number of devices from different manufac-
turers do not allow for an easy comparison between dif-
ferent devices’ security and privacy postures. Manufac-
turers each adapt and update their respective firmware
images. Furthermore, images published on OEM web-
sites do not necessarily match those installed in the
field. Relevant software aspects do not remain static
after initial device release, but need to be measured
on real devices that receive these updates. There are
various potential sources for collecting such attributes,
including webscraping, crowdsourcing, and dedicated
device farms. However, raw data alone is not helpful
in making meaningful decisions on device security and
privacy. We make a website available to access collected
data. Our implementation focuses on reproducible re-
quests and supports filtering by OEMs, devices, de-
vice models, and attributes. To improve usability, we
further propose a security score grounded on the list
of attributes. Based on input from Android experts,
including a focus group and eight individuals, we have
created a method that derives attribute weights from
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the importance of attributes for mitigating threats on
the Android platform. We derive weights for general
use cases and suggest possible examples for more spe-
cialized weights for groups of confidentiality/privacy-
sensitive users and integrity-sensitive users. Since there
is no one-size-fits-all setting for Android devices, our
website provides the possibility to adapt all parameters
of the calculated security score to individual needs.

Index Terms—security analysis, security scoring, mo-
bile security, data mining, webscraping, crowdsourcing,
security, privacy

I. Introduction
The ever-growing number of Android device models and

device manufacturers increases the number of options for
consumers ranging from low-budget to high-end flagship
devices. It is a challenging task to evaluate and compare
devices with regard to security and privacy. Psychology
suggests that choice overload decreases the ability of con-
sumers to properly compare and evaluate their options due
to decreasing commitment and oversight [1].

Web services such as GSMArena1 allow users to search
for and compare devices from different manufacturers.
While useful for assessing functionality, these platforms
lack the depth needed to thoroughly evaluate the se-
curity and privacy posture of Android devices. This is
particularly true for software-related features and support,
including the timeliness of security updates, which require
long-term observation on actual devices. According to
Statista [2], 74.86 % of devices use an Android version
where security updates could still be available2 (Android
≥ 10). Even though the proportion of devices with a still
supported Android version is quite high, the security patch
levels of these devices may vary substantially.

1https://www.gsmarena.com/
2https://source.android.com/docs/security/bulletin/2024-08-01

2024 IEEE Conference on Communications and Network Security (CNS)

DOI: 10.1109/CNS62487.2024.10735682 
979-8-3503-7596-1/24/$31.00
©2024 IEEE



Emerging developments in digital identity markets, such
as the mobile driving license (mDL, ISO/IEC 18013-
5:2021), often have regulatory requirements towards the
security of end-user devices. For instance, the presence of
“StrongBox” is considered a critical factor for digital iden-
tity applications and other scenarios involving on-device
key storage. As a result of missing device information and
market statistics, we can only guess that it is supported on
less than 10 % of devices. While some statistics about the
share of devices supporting StrongBox may exist internally
at Google, the information is not publicly available. The
impact of security attributes on the overall security of
Android devices still remains largely unexplored.

This research aims to assist tech reviewers to include
security assessments alongside their feature reviews and
assists end users and businesses in making informed future
purchase decisions. To facilitate comparisons between An-
droid devices based on security attributes, we must distill
the vast array of collected data into a straightforward
security score. This simplification is essential because most
people do not have the time or expertise to evaluate
numerous attributes directly. To integrate these security
attributes into a coherent score, we must first weight
and normalize them, acknowledging that they vary in
importance and come in different data types. The number
of security relevant attributes of devices, user groups,
use cases with different threat models, and the rapidly
changing software make it difficult to create a one-size-
fits-all security scoring formula.

We take inspiration from prior mobile device research
by utilizing a combination of dedicated device farms and
webscraping to collect a set of security attributes from
different device models [3]. However, we argue that merely
gathering raw data is insufficient. Users, depending on
their specific use cases and knowledge levels, might find
more value in explainable data that is derived from actual
devices, and in concise security “scores” facilitating swift
comparisons. The ability to modify such metrics based
on the needs of users improves on the granularity of the
security scores. Therefore, our main contributions in this
work focus on:

Threat model based pre-defined attribute selec-
tions: The Android platform security model [4] already
defines the assumed threat model in the context of this
work, and our pre-defined “Default Security” attribute
selection uses this threat model to create the best generic
combination of important attributes and to weight them
according to the impact and severity of the threats. To
strengthen our claims, we include the variance measure
from inputs of eight experts (namely mentioned in ac-
knowledgments) to display the agreement and confidence
upon the assigned values. Our basic formula for security
score calculation weights every attribute and calculates the
percentage of the total weight. This allows users easier
comparison of devices without the need to define com-

plicated attribute selections and weightings themselves.
Depending on a user’s role or identity, the impact and
severity of the threats may vary and so we also define sepa-
rate scores for confidentiality/privacy or integrity sensitive
users, as well as supporting custom scores.

Frontend to access the collected data: A new
frontend for reviewers, researchers, and end users allows
to access, filter, and export collected measurements. A
set of device-specific filters, including the OEM, device,
and device model as well as value-based filters for selected
attributes, allow users to select and compare devices in a
granular way. Attribute types include booleans, ranges of
numeric values, ranges of dates, and text-based values.

We have created a domain-specific query language
(DSQL) to allow users to a) reproduce and share results
from their selection, b) allow text-based requests to select
data from the database, and c) export the generated
results into common formats like CSV, XLS, and PDF.
The API used in the middleware between the website
frontend and the database can also be accessed publicly,
which allows seamless integration into other programs for
internal evaluation of devices.

Security scores and security labels are displayed to the
user with lists of all used, missing, and faulty attributes,
together with separate percentages of achievement for
each category. The frontend provides a temporal (his-
torical) visualization of existing measurements including
security patch levels, firmware kernel versions, and se-
curity updates for every device. Figures 1 and 2 show
an excerpt of our website which is publicly available at
https://www.android-device-security.org/database.

Collection and verification of security update
promises: Many manufacturers publish relevant security
update promises, security bulletins, and other information
about devices on their websites; often lacking a machine-
readable format. Due to the vast quantity of existing de-
vice models, it is challenging to collect significant amounts
of first-hand information about Android devices. Android
apps also cannot access most of the hardware-specific
information like the system-on-chip (SoC) component.
Manual or automated webscraping is usually the only
way to obtain such information or to complement existing
information about devices.

To the best of our knowledge, we are the first to
systematically collect and verify security update promises
of smartphone manufacturers. At the time of writing we
are collecting security update promises from Fairphone [5],
Google [6], Huawei [7], Motorola [8], Nokia [9], One-
Plus [10], [11], Oppo [12], Samsung [13]–[15], Vivo [16],
and Xiaomi [17]. Considering these update promises pledge
time periods of up to ten years, validation of update
promises will only be possible in the future, but we
can detect any current deviation from the manufacturers’
promises. As the Android version and security patch level
are the most important security attributes of Android



devices in the calculation of our security scores, the veri-
fication of vendor’s update promises helps in the ranking.

II. Related Work
Within the Android ecosystem, there is a sophisticated

and ever-changing structure of various security mech-
anisms. Mayrhofer et al. [18] discuss the development
history of Android up to version 11, focusing on the mech-
anisms and concepts present in the Android Open Source
Project (AOSP) (a later revision updated it to cover up to
version 14 [4]). In their research, they systematized numer-
ous threats to privacy and security, such as the potential
danger of various memory or privilege escalation attacks,
which can be mitigated using tamper resistant hardware
(particularly the StrongBox Keymaster). Our attribute
selection and weighting algorithm is based on this defined
threat model, which includes the categories physical or
proximal access, network-level threats, application code,
and data and metadata processing.

A comprehensive data collection of low-level data in
33 different event categories using their Device Analyzer
app was conducted by Wagner et al. [19] over a span
of almost eight years (2011–2019). This study involved
over 30 000 Android users worldwide, who participated in
crowdsourcing. In order to evaluate the performance of
device manufacturers and network operators in terms of
updates and vulnerability exposure, in 2015, Thomas et
al. [20] introduced the security metric called Free-Update-
Mean (FUM), using the Device Analyzer data. They
concluded that manufacturers are the main bottleneck in
the latency of the security update processes and left the
vast majority of users critically vulnerable.

The Uraniborg risk computation framework introduced
by Lau et al. [21] offers a method for determining the
security risk of an Android device in terms of pre-installed
apps. It utilizes factors such as the quantity of apps with
signature permissions, pre-granted permissions, cleartext
communication of apps, and a unique risk score for par-
ticular permissions.

In their study, Ozbay and Bicakci [22] suggest a com-
prehensive security score for devices that is determined by
evaluating pre-installed applications using various metrics.
Each metric is assigned a security score based on the
number of affected pre-installed applications, the level of
difficulty in exploiting them, and the potential impact
of exploitation. The overall score is then calculated by
summing up and normalizing the individual metric scores.

The Overall Security Evaluation Score (OSES) was
proposed by Khokhlov and Reznik [23] as a means to assess
device security and verify the authenticity of sensor data.
The metric operates under the assumption that greater
user permissions correspond with an increased likelihood
of sensor data tampering.

AndScanner+ is a self-contained Android firmware im-
age crawling, extraction, and analysis tool designed by
Hou et al. [24] and used on 8 325 firmware images, with

Android versions ranging between 2.x and 12, from 153
vendors and 813 Android-related CVEs. In addition to
the valuable historical analysis of firmware images, future
work might limit the selection of firmware images to the
last few years to reflect the current development process of
firmware image providers (i.e. vendors and upstream sup-
pliers). The authors observed a patch delay of 2.5 months
on average in 31.4 % of all firmware images and 5.6 % of
all firmware images contained unfixed vulnerabilities, even
though the security patch level was updated. Up to 61.9 %
of the firmware images contained potentially vulnerable
pre-installed apps of which 73.9 % were sourced to the
vendor, 9.7 % to AOSP, and 16.4 % to third party partners.

Jones et al. [25] investigated the process of deploying
Android security updates and OS upgrades. They utilized
a pseudonymized dataset sourced from HTTP access logs
of a social network app. The dataset included information
such as the date of the request, hashed user account
identifier, user-agent string (containing OS and build ver-
sion, phone model, etc.), country code (derived from IP
address). Additional data scraped from Android security
bulletins, carrier and manufacturer security update an-
nouncements, and device release dates from GSMArena
and PhoneArena was also incorporated. An interesting
aspect of this study was the examination of metadata
from Android security bulletins and CVEs, as it revealed
the necessary security updates that manufacturers should
implement to ensure their security update commitments
[26], [27].

A. Gaps Addressed by Our Research
Previous work provides a solid basis for assessing An-

droid devices from different manufacturers by analyzing
security updates and vulnerabilities [19], [20], [24]–[27],
and permissions in pre-installed applications [21]–[23].
Although this research yields valuable insights, it concen-
trates on narrow software aspects like Android versions
and app permissions, while overlooking hardware security
features, which is taken into account in our data col-
lection and evaluation framework. Since app permissions
and firmware vulnerabilities frequently change with each
update, and access to the research datasets is limited,
these approaches do not offer an actionable way to evaluate
the holistic security of specific devices.

Our work adopts a more comprehensive approach to
security by creating and providing access to a longitu-
dinal database of security-relevant attributes for specific
devices, including historical data for each device. With our
domain-specific-query-language we achieve repeatable and
shareable results. The publicly available database includes
previously unpublished security attribute measurements
from real devices, such as the support of StrongBox,
Android Virtualization Framework biometric authentica-
tion methods, seamless updates, as well as the current
and historical Android, kernel and Keymaster/KeyMint
versions of a device. Our novel security scoring approach



uses weighted attributes based on their importance and
a non-numerical security label to quickly find suitable
devices fulfilling all requirements. Combined with our web-
interface, devices can be ranked based on the calculated
security scores using custom selections of attributes and
their weights.

III. Data Collection and Processing
In prior work [3] we introduced an open data collection

and processing framework for Android security attributes
that we build on in this paper. We gather data through
measurements on real devices using device farms and
crowdsourcing, as well as webscrapers for factual infor-
mation like security update commitments. To improve on
reproducibility and error management, every component
(scanner modules, database schema, raw data evaluation,
and real device measurements via firmware fingerprints)
includes software versioning. Rebuilding the database from
the raw data archive allows for fixes in structural errors
of the data processing. Besides the existing framework,
we developed a profile-owner app which programmatically
tests if system or security updates are available for the
device. This app helps us keep track of the available
updates on all devices in the device farm by creating a
cron job which sends an e-mail notification when updates
are available.

A comprehensive list of collected security attributes
used in this research is available online.3

IV. Analysis and Security Scoring
This section describes a method for selecting and

weighting security attributes based on the threat model
defined by Mayrhofer et al. [4], which we then use to
calculate security scores for specific device models. The
goal of our research is to provide a functional and easy to
use framework for the security scoring of Android devices.
For this purpose we defined the following requirements and
desired functionality of potential users:

• Create a web-frontend for security scoring of Android
devices without the need for time-consuming configu-
ration. The web-frontend is not the main contribution
of our research, but it is aimed to help the community
to evaluate devices based on their security attributes.
Future work might study the usability of our web-
frontend for security scoring.

• Allow users to define fine-grained rules for the calcu-
lation of the security score.

• Define security labels for devices, in addition to the
calculated numerical score. This allows for easier
filtering of unsuitable devices based on the user’s
requirements.

• Users should be able to filter shown attributes and
attributes used for the security score calculation based
on their data types.

3https://www.android-device-security.org/attributes

• Device and attribute selections, threshold definitions,
and measurement sources, which can either be lab
devices, real devices (lab devices and crowdsourcing
devices), or all measurements including webscraping
data, should be easily reproducible and shareable
between users.

A. Security Score Calculation
The “Default Security” score is designed as a well-

rounded score for average users, by selecting and weight-
ing security attributes based on the Android platform
security threat model [4], including physical and proxi-
mal (T.P), network-level (T.N), application (T.A) code,
and data (T.D) processing threats. In our work we use the
original threat identifier set T = {T.P1,. . . ,T.P4,
T.N1,. . . ,T.N3,T.A1,. . . ,T.A8, T.D1,T.D2}. Android de-
vice models D ⊆ A are each containing a subset of
security attributes ai out of all attributes in our database
A = {a1, a2, . . . , an}. Whether a device contains a secu-
rity attribute depends on the defined requirements, such
as being within a threshold or range of values. Non-
boolean attributes are transformed into boolean values for
the weight calculations, by testing against the required
threshold.

Security attributes preventing/impeding exploitation or
limiting the impact after successful exploitation are de-
noted by the function M : A → 2T . Table I shows
the list of affected threats for each attribute. Due to
the complexity of evaluating all possibilities, we chose to
exclude exploit chaining from our threat model.

Since not all threats are equally dangerous, a risk value
R(tj) is assigned to each threat tj ∈ T , using the function
R : T → R defined in Equation 1:

R(tj) = L(tj) ·
∑

c∈{C,I,A,P T }(fc · Ic(tj))
4 − #InoRating

(1)

For the calculation of the risk associated with a threat
tj , the likelihood of occurrence L(tj), defined in percent
(low = 33 %, moderate = 66 %, high = 100 %), is based on
the difficulty to deploy and scale an attack, considering
time, tools, knowledge, and capabilities. This likelihood
value is multiplied by the averaged impact I(tj) (none = 0,
low = 1, moderate = 2, high = 3) of the categories confiden-
tiality (IC), integrity (II), availability (IA), and privacy
and tracking (IPT) to calculate the risk R(tj) of a specific
threat tj . Based on the specific threat model, impact
categories may be valued in a different way than others
using factor fc. Factor fc is 1 for all impact categories of
the “Default Security” score. Table II shows the likelihood,
impact, and the resulting risk of all threats T from the
Android platform security threat model [4]. As shown in
Table II, the impact on availability for T.P2–T.P4 has
no rating, as it is evident that the attacker has physical
access to the device, and therefore it cannot be available
to the owner. Values without rating are excluded from the



calculation of the averaged impact as taken into account
by #InoRating.

Security attributes ai ∈ A are mapped to a weight
w(aj) based on the number of addressed threats and their
respective risks divided by the number of total threats,
i.e., the cardinality of set T .

w(aj) =
∑

ti∈M(aj) R(ti)
|T |

(2)

The attribute weights are normalized to the range [0, 100]
and used to calculate the final security score s(D) for
device D, by adding up all weights of this device’s security
attributes and dividing them by the sum of all attribute
weights, according to Equation 3:

s(D) =
∑

aj∈D w(aj)∑
aj∈A w(aj) · 100 (3)

In addition, we defined usability points for attributes
that do not affect specific threats, but improve the total
security of the device by incentivizing secure user behavior.
This is currently only applied to the “A/B (seamless) sys-
tem updates” attribute as this does not improve security
in general but lowers the time for which the device is
not available during updates4 and thus users might install
updates faster. The option of using usability points might
be useful in the future for new attributes that improve
usability.

B. Data Verification with Control Group
To strengthen the claimed values in Table I and Table II,

we decided to include input from eight expert raters. All of
the raters, as well as the members of the focus group, have
similar, senior-level knowledge within the research area.
Variance is used to show the agreement within one value,
whereas Krippendorff’s alpha α [28] is a statistical measure
of inter-coder agreement or inter-rater reliability. It allows
for a flexible number of raters, any number of variables
with different levels of measurement [29] and incomplete
(missing) data. In essence it works by weighting the rating
based on the expected agreement by chance, which means
that Krippendorff’s alpha will stay low, if the expected
agreement by chance is high. Table II includes ordinal data
and an agreement within the control group of α is 30.06%.
Comparing the median of the control group to the data
from the expert group the agreement α is 54.46% and the
percentage of agreement in which both values match is
56.10%. Table I contains nominal dichotomous data and
an agreement within the control group of α is 18.08%.
Comparing the median of the control group to the data
from the expert group the agreement α is 43.94% and
the percentage of agreement in which both values match
is 72.79%. The low agreement between the experts and
between the experts and the focus group might be derived

4A/B (seamless) system updates: https://source.android.com/d
ocs/core/ota/ab.

from the the general definitions of the threat model. The
weighting for the “Default Security” score should only
propose a possible weighting, but a more specific threat
model might help to improve agreement upon experts.

C. Customizing the Score for Sensitive Groups of Users
The selection and weighting of attributes is fully con-

figurable by the end user. To demonstrate and explain
possible custom security score attribute selections and
weights based on the threat models, we chose two differ-
ent user groups of confidentiality/privacy-sensitive users
(e.g., journalists and politically persecuted activists) and
integrity-sensitive users (e.g., CEOs and government offi-
cials). Threats impacting the privacy and confidentiality
are likely more dangerous for journalists than for other
people and threats impacting the integrity of a device
and its data are probably more dangerous for people with
significant decision-making power like CEOs. For accurate
definitions of impacts for specific groups such as journalists
and CEOs, it is necessary to design interviews and capture
relevant insights to the actual threats of these groups. We
use these user groups only to illustrate possible use cases
of custom security scores.

In comparison to our “Default Security” pre-defined
score, the custom security scores focus on very specific
threats in contrast to the broad threat model evaluation.
These threats are mapped into the security score by
multiplying the affected impact categories with a group-
specific factor. As the impact of specific categories depends
on the user group, we demonstratively defined the factors
for the impact of privacy and tracking and the impact of
confidentiality on our example group of journalists as 1.5
and 1.3 respectively, and a factor of 1.5 for the integrity
impact on the CEOs example. These multiplication factors
for impact categories are not based on any qualitative
data analysis and they serve only to illustrate the concept
of security scoring of different user groups. Future work
might collect and evaluate requirements of various user
groups through well-designed surveys and interviews.

Journalists and politically persecuted activists are often
targets of attacks in the digital space, especially in politi-
cally unstable countries. Therefore, these people are often
at the risk of physical access and network-level threats.
In some cases, journalists are at risk with data processing
when receiving and unintentionally running exploit code
disguised as confidential documents.

CEOs and government officials often have access to
either classified or sensitive data and services. They specif-
ically may become target of criminal groups aiming to steal
money/intellectual property or demand blackmail/ransom
rather than nation state actors. Therefore, physical ac-
cess threats of CEOs are not as impactful compared
to journalists. Despite that, CEOs are still subject to
unlocked device control of an authorized user. As potential
mitigation, work profiles are one example that may prevent
this kind of abuse. Malicious authorized users may also



TABLE I
Allocation of the collected attributes to threats. Attributes are relevant for a threat, if they either prevent/impede
exploitation or limit the impact after successful exploitation. The calculated and normalized weights are also included.

Due to space constraints, we omitted the ‘T.’ from the original threat identifiers defined by Mayrhofer et al. [4]. The
background color signals the confidence and agreement in the input data σ2 = [0, 1] from the focus group and individual
experts, with white meaning high confidence (σ2 ≤ 0.7), yellow meaning moderate confidence (0.7 ≤ σ2 ≤ 0.85), and grey
meaning low confidence (0.85 < σ2 ≤ 1). Values of the focus group matching with the median of the control group are

printed bold.

Attribute P1 P2 P3 P4 N1 N2 N3 A1 A2 A3 A4 A5 A6 A7 A8 D1 D2 Default Journalist CEO Usability
Weight Weight Weight Points

Android Version ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✕ ✓✓✓ ✓✓✓ 100 100 100

Security Patch Level ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✕ ✓✓✓ ✓✓✓ 100 100 100

Fingerprint Authentication ✕✕✕ ✕ ✓✓✓ ✓ ✕✕✕ ✕✕✕ ✕✕✕ ✕✕✕ ✕✕✕ ✕✕✕ ✓ ✓ ✕✕✕ ✕✕✕ ✕✕✕ ✕✕✕ ✓ 41 42 42

Face Authentication ✕✕✕ ✕ ✓✓✓ ✓ ✕✕✕ ✕✕✕ ✕✕✕ ✕✕✕ ✕✕✕ ✕✕✕ ✓ ✓ ✕✕✕ ✕✕✕ ✕✕✕ ✕✕✕ ✓ 41 42 42

Iris Authentication ✕✕✕ ✕ ✓✓✓ ✓ ✕✕✕ ✕✕✕ ✕✕✕ ✕✕✕ ✕✕✕ ✕✕✕ ✓ ✓ ✕✕✕ ✕✕✕ ✕✕✕ ✕✕✕ ✓ 41 42 42

Keystore ✕✕✕ ✕ ✕ ✓✓✓ ✕✕✕ ✕✕✕ ✕✕✕ ✓✓✓ ✓ ✓ ✕✕✕ ✕✕✕ ✕✕✕ ✓✓✓ ✕ ✕✕✕ ✓ 54 53 54

Embedded Secure Element ✕✕✕ ✓✓✓ ✓✓✓ ✓ ✕✕✕ ✕✕✕ ✕✕✕ ✓ ✓ ✓ ✕✕✕ ✕✕✕ ✕✕✕ ✓✓✓ ✕ ✓ ✓✓✓ 65 66 66

Embedded SIM ✕✕✕ ✓ ✓ ✓ ✓ ✓ ✕ ✕✕✕ ✕✕✕ ✕✕✕ ✕✕✕ ✕✕✕ ✕✕✕ ✓✓✓ ✕✕✕ ✓ ✓✓✓ 60 60 60

StrongBox ✕✕✕ ✓✓✓ ✓✓✓ ✓ ✕✕✕ ✕✕✕ ✕✕✕ ✓ ✓ ✓ ✕✕✕ ✕✕✕ ✕✕✕ ✓✓✓ ✓✓✓ ✓ ✓✓✓ 70 70 71

Trusted Exec. Environment ✕✕✕ ✓✓✓ ✓✓✓ ✓✓✓ ✕✕✕ ✕✕✕ ✕✕✕ ✓✓✓ ✓✓✓ ✓ ✕✕✕ ✕✕✕ ✕✕✕ ✓✓✓ ✕✕✕ ✓ ✓✓✓ 65 66 66

A/B System Updates ✕✕✕ ✕✕✕ ✕✕✕ ✕✕✕ ✕✕✕ ✕✕✕ ✕✕✕ ✕ ✕✕✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ 0 0 0 20

Android Virt. Framework ✕✕✕ ✕✕✕ ✕✕✕ ✕✕✕ ✕✕✕ ✕✕✕ ✕✕✕ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✕✕✕ ✕✕✕ ✓✓✓ ✕✕✕ ✕✕✕ ✓✓✓ 49 48 49

Identity Credentials ✕✕✕ ✓✓✓ ✕✕✕ ✓✓✓ ✕✕✕ ✕✕✕ ✕✕✕ ✓ ✓ ✓ ✓ ✕✕✕ ✓ ✓ ✕✕✕ ✓ ✓ 74 73 74

Multiple User Support ✕✕✕ ✕✕✕ ✕✕✕ ✓✓✓ ✕✕✕ ✕✕✕ ✕✕✕ ✓✓✓ ✓✓✓ ✓ ✓ ✓ ✕✕✕ ✓ ✕✕✕ ✕✕✕ ✓ 69 69 69

Protected Confirmation ✕✕✕ ✓ ✕✕✕ ✓ ✕✕✕ ✕✕✕ ✕✕✕ ✓ ✓✓✓ ✓ ✓✓✓ ✓ ✓✓✓ ✓ ✕✕✕ ✕✕✕ ✓ 75 75 76

Enc. Shared Preferences ✕✕✕ ✕✕✕ ✕✕✕ ✓✓✓ ✕✕✕ ✕✕✕ ✕✕✕ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✕✕✕ ✕✕✕ ✓ ✕✕✕ ✕✕✕ ✓ 64 63 65

TABLE II
Assignment of likelihood of occurrence, the impact divided into the categories confidentiality, integrity, availability, and
privacy and tracking, and the resulting risk for the pre-defined “Default”, “Journalist”, and “CEO” scores. The original
threat identifiers defined by Mayrhofer et al. [4] are used. The values in the brackets show the variance σ2 in the input

data from the focus group and individual experts. Low values signal confidence and agreement in the data. The background
color signals the confidence and agreement in the input data σ2 = [0, 1] from the focus group and individual experts, with

white meaning high confidence (σ2 ≤ 0.7), yellow meaning moderate confidence (0.7 ≤ σ2 ≤ 0.85), and grey meaning low
confidence (0.85 < σ2). Values of the focus group matching with the median of the control group are printed bold.

Threat (tj) Likelihood (L) Impact (IC) Impact (II) Impact (IA) Impact (IP T ) Risk (R) Risk (R) Risk (R)
Confidentiality Integrity Availability Privacy/Tracking Default Journalist CEO

T.P1 Mod. (0.44) Low (0.62) Low (0.67) Low (0.99) Low (0.47) 66 79 74
T.P2 Low (0.44) Low (0.99) Low (0.99) No Rating High (0.69) 55 75 61
T.P3 Mod. (0.4) Low (0.47) Low (0.67) No Rating High (0.69) 110 150 121
T.P4 High (0.47) High (0) High (0.44) No Rating High (0) 300 380 350
T.N1 High (0.1) Low (0.47) None (0.32) None (0.22) Low (0.54) 50 70 50
T.N2 Mod. (0.25) High (0.84) High (0.77) High (0.77) High (0.47) 198 238 223
T.N3 Mod. (0.22) High (0.84) High (0.77) High (0.44) High (0) 198 238 223
T.A1 High (0.47) Low (0.99) Low (0.91) Low (0.77) High (1.06) 150 195 163
T.A2 Mod. (0.36) Low (0.73) Low (0.44) Low (0.36) Moderate (0.69) 83 104 91
T.A3 High (0.22) Low (0.67) Low (0.62) Low (0.32) Moderate (0.84) 125 158 138
T.A4 High (0.75) Moderate (0.23) Low (0.69) Low (0.69) High (0.5) 200 253 225
T.A5 High (0.73) Moderate (0.48) None (0.36) None (0.36) High (1.11) 99 134 107
T.A6 Mod. (0.23) High (0.48) High (0.69) High (0.61) Low (0.36) 74 86 83
T.A7 High (0.84) High (0.1) High (0.1) High (0.69) High (0.17) 300 360 338
T.A8 Low (0.1) High (0.69) High (0.44) High (0.89) High (1.11) 99 119 111
T.D1 Low (0.86) High (1.19) Mod. (0.36) Low (0.36) High (0) 66 86 70
T.D2 Mod. (0.23) Mod. (0.75) High (0.48) Mod. (0.5) Low (0.69) 116 134 132



install spyware, encrypting trojans, and other unwanted
software on devices and the smartphone owner is therefore
also vulnerable to application code threats—particularly
with the elevated access available to CEO and comparable
roles. CEOs of companies are assumed to be in a controlled
secure network environment, e.g., through an always-on
VPN, which mitigates most of the network-level threats.
Targeted unique identifier abuses, which are defined in
T.D1, are also a common threat to CEOs. Impact of
threats defined in Table II affect the weights of attributes
for different groups in Table I, because of the factors used
for the various user groups and impact categories.

D. Security Label and Default Security Score
In addition to numerical security scoring we propose a

non-numeric scoring label that helps users quickly make
decisions about the security of a device. These labels are
based on the categorization of selected security attributes
as high, moderate, low, or unset, and result in displayed
security labels for the device model of high, moderate, low,
or insecure.Thresholds are used to determine whether a
security attribute requirement is fulfilled. Afterwards, the
maximum value of the unfulfilled attribute requirements
is subtracted from the maximum security label (High (3))
to give the resulting security label. For the resulting
security label to be High (3), all selected security attribute
thresholds must be met or have unset importance (0). If
the maximum importance of unmet security attributes is
Low (1), then this results in a label of Moderate (2), a
maximum importance of Moderate (2) results in a label
of Low (1), and a maximum of High (3) leads to a
label of Insecure (0). Figure 1 illustrates the “Default
Security” attribute selection and the resulting security
score diagram of the Google Pixel 7 with the devices in
the table ranked by the security score respectively. The
“Attribute Weight Selection” tab allows users to select the
desired attributes used for the security score calculation.
Next to the pre-defined security score attribute selections
“Default Security”, “Journalist” (confidentiality/privacy-
sensitive), and “CEO” (integrity sensitive), there is also an
option for users to create their own attribute selections and
weights. For every attribute the desired weight, security
score label, and possible operations defined in Table III
can be applied.

E. DSQL and Data Type Definitions
We developed a domain-specific query language (DSQL)

to access a defined view on the collected data. The fron-
tend website encodes its state and selections within the
URL which allows for reproducible queries and pre-defined
settings. Direct access via the documented API requests
introduce the possibility to integrate the data in other
applications to be used for security checks and decision-
making. Based on the data type of attributes, different
operations can be applied with the filtering and attribute
selection for the security score calculation.

(a) Interface for defining the “Default Security” score in the frontend.
It shows the name, threshold value, security score level, and weighting
for each attribute.

(b) Interface displaying the resulting security score (left) and security
label (mid) along with the security scores across the five different
categories (right). It also lists the attributes used in the calculation
of the score, and those ignored.

Fig. 1. Proposed security score frontend interface

TABLE III
Attribute data types and evaluations.

Data Type Data Filters Security Score Operations

Boolean True, False, N/A Negate
Numeric Range Threshold, Distance
Date Range Threshold, Distance
Text Set Selection -

Table III shows the existing data types and possible
operations for data selection and security scoring. By using
these security score operations, we convert all data into
boolean values, which enables us to use a simple security
scoring formula to summarize the weights of all true (or
false if negated) values and divide them by the total weight
number.

Boolean values can be negated to indicate that an at-
tribute or experiment must not be found, like for example
the ability to export keys from the keystore. Numeric and
date values allow the definition of thresholds (threshold
approach). The second, more sophisticated, approach (dis-
tance approach) also uses thresholds, but the calculation
includes the distance to the best possible value in the
scoring. This approach enables better scoring and ranking
within a list of suitable devices. In some cases, like with the
security patch level, the risk might increase non-linearly
with larger distances, as devices with a security patch level
older than one year are much more vulnerable than devices
with a three-month-old security patch level.



For example, the URL https://www.android-device-
security.org/database/?realMeasurementsOnly=true&
securityScoreLabel-API%20Level=High&show=Face&
minThreshold-api_level=32&selectedDeviceModel=7 fil-
ters for only real device measurements with the face
authentication attribute. The very simple security scoring
is only based on the check if devices have an API level
greater than or equal to 32. The security score label is set
to high, which means that all devices with an API level
smaller than 32 are labeled as insecure (section IV-D).

F. Research Methods
Tables I and II are defined by a group of academic

Android experts from different universities in multiple
countries. Because the threat model was (intentionally)
defined in a general unspecific way, there is no objective
and exact definition of the values in these tables. To verify
our assignments, we let a control group of eight Android
experts define these tables individually. Based on the
separate inputs from Android experts, including a focus
group and eight individuals, we calculate the variance σ2

of each field in the data and the Krippendorff alpha over
the whole dataset. Further details of the data verification
are described in Section IV-B. Using this methodology, we
are able to distinct between results that are agreed upon
and uncertain ones. Finding the best-fitting values is a
difficult task and using inputs from a control group does
not necessarily improve the resulting assignments, but it
shows which data is agreed upon and thus trustworthy.

Before adopting a basic risk formula for calculating
attribute weights, we considered using the Attack Po-
tential method defined in ISO/IEC 18045:2022 [30]. This
method requires defining attack potential values for each
threat across categories such as elapsed time, expertise,
target knowledge, window of opportunity, and the required
equipment. However, since most of these values depend
more on expert opinions than on hard facts, using this
method could introduce more error risks compared to the
basic risk formula we ultimately chose.

Due to missing data, it is possible that not all devices
have the same set of attribute measurements. Missing
attributes are excluded from the security score calculation
and listed in the “Result” tab (Figure 1), in addition to
the list of used attributes and the list of issues (attribute
does not match the expected value or threshold). Because
of potentially missing attributes, the user still needs to in-
terpret the security score and check if enough information
is used.

V. Historical Data Analysis
Many aspects of software, like for example the security

update time and frequency, can only be measured over
time. Therefore, our data collection and evaluation frame-
work is designed to store and present historical data of
Android devices, such as the security patch level, kernel
version, and patch delay at a specific time.

As of the release of the Pixel 8 devices, Google is promis-
ing security and Android version updates for at least seven
years [6]. By using the Qualcomm QCM6490 extended
life chipset, Fairphone is able to promise five Android
version updates and at least eight (up to ten) years of
security updates [5]. Other manufacturers either provide
security update promises and update frequencies per de-
vice (Google [6], Motorola [8], Nokia [9], OnePlus [10], [11],
Samsung [13]–[15]) or only provide the current security
update frequencies (Huawei [7], Oppo [12], Vivo [16]). It
is notable that Xiaomi is only providing a list of devices
which are no longer supported [17].

The Android Device Security Database5 also provides
an interface to display time diagrams for the promised and
measured security update frequency of specific devices.
The update frequency is calculated by grouping the first-
seen time distance of patches into the proper groups
of 30, 60, 90, or 120 days, and calculating the average
distance in days for each of these groups. These groups
should represent the lifecycle of Android devices in which
security updates are usually published more frequently
in the beginning. Even though this information is useful,
it must be verified by the user due to the possibility of
missing measurements. Figure 2 shows the security patch
level distance to the most current security patch level at
the time and the API level of the Google Pixel 5. The
tooltips show the build date and the kernel version of the
firmware. As the first data point of the security patch
level distance indicates, the distances are based on real
measurements and as the device was not in an updated
state at the beginning, the first distance is greater than in
the following months.

VI. Conclusion & Future Work
Our work introduces the first platform to holistically

compare and evaluate Android devices based on their secu-
rity attributes. The website provides pre-defined security
attributes and weighting for general use cases and the
possibility to define a repeatable, fine-grained scoring for
individual use cases. In order to demonstrate examples
of specific weight priorities for user groups with different

5https://www.android-device-security.org/database

(a) Security patch level release
distance in days

(b) Android version release dis-
tance in days

Fig. 2. Historical data representation



threat models, we use journalists and CEOs as represen-
tatives of known differing threat models. The weights are
calculated using the threat model for Android devices as
well as expert knowledge. Using a control group of eight
Android experts, we are able to show the confidence of our
assignments and we are able to reduce the subjectiveness
as much as possible. Due to the general definitions of the
threat model, the agreement between each rater and be-
tween the focus group and group of raters is relatively low.
This result is expected and the “Default Security” score
is only meant to be used for quick comparisons between
devices. Users are encouraged to select and weight the
importance of the attributes based on their own specific
threat model. Our prior belief in the importance of the
Android version and security patch level was corroborated
by our threat model based attribute weighting.

Future work will also include data from crowdsourcing
which will improve accuracy of the security update release
dates and mitigate the errors due to updates being dis-
tributed in batches for different regions.

The current implementation still leaves room for en-
hancing functionality. At present, it is not possible to
analyze detailed views of firmware images, specifically
differentiating the default packages installed. Future im-
plementations may introduce the analysis of installed
SELinux policies and raw data collected from live devices
in the field via crowdsourcing.
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