JOHANNES KEPLER
UNIVERSITAT LINZ

NixCon '24

hashes all the way down

Martin Schwaighofer > .:Jt::Ar::::YKEIILLZIER
Johannes Kepler University Linz Al ER
2024-10-25, Berlin (Germany)) juat

Cloud Build Systems

JXU

JOHA
UNIVI

Build Systems a la Carte

ANDREY MOKHOV, Newcastle University, United Kingdom
NEIL MITCHELL, Digital Asset, United Kingdom
SIMON PEYTON JONES, Microsoft Research, United Kingdom

Build systems are awesome, terrifying — and unloved. They are used by every developer around the world, but
are rarely the object of study. In this paper we offer a systematic, and executable, framework for developing
and comparing build systems, viewing them as related points in landscape rather than as isolated phenomena.
By teasing apart existing build systems, we can recombine their components, allowing us to prototype new
build systems with desired properties.

CCS Concepts: » Software and its engineering; - Mathematics of computing;
Additional Key Words and Phrases: build systems, functional programming, algorithms

ACM Reference Format:
Andrey Mokhov, Neil Mitchell, and Simon Peyton Jones. 2018. Build Systems a la Carte. Proc. ACM Program.
Lang. 2, ICFP, Article 79 (September 2018), 29 pages. https://doi.org/10.1145/3236774

1 INTRODIICTINON

Extending Cloud Build Systems
to Eliminate Transitive Trust

JXY

JOHA
UNIVI

Extending Cloud Build Systems to Eliminate Transitive Trust

Martin Schwaighofer
martin.schwaighofer@ins.jku.at
Johannes Kepler University Linz

Linz, Austria

Abstract

Trusting the output of a build process requires trusting the build
process itself, and the build process of all inputs to that process, and
so on. Cloud build systems, like Nix or Bazel, allow their users to
precisely specify the build steps making up the intended software
supply chain, build the desired outputs as specified, and on this
basis delegate build steps to other builders or fill shared caches with
their outputs. Delegating build steps or consuming artifacts from
shared caches, however, requires trusting the executing builders,
which makes cloud build systems better suited for centrally man-
aged deployments than for use across distributed ecosystems. We
propose two key extensions to make cloud build systems better
suited for use in distributed ecosystems. Our approach attaches
metadata to the existing cryptographically secured data structures
and protocols, which already link build inputs and outputs for the
purpose of caching. Firstly, we include builder provenance data,
recording which builder executed the build, its software stack, and
a remote attestation, making this information verifiable. Secondly,
we include a record of the outcome of how the builder resolved

aaale s N oacsnes Tl nd Slhhianse funva svsandianas alivtnats Svan ot iora

Michael Roland
michael.roland@ins.jku.at
Johannes Kepler University Linz
Linz, Austria

René Mayrhofer
rm@ins.jku.at
Johannes Kepler University Linz
Linz, Austria

1 Introduction
1.1 Motivation

Securely building, deploying, and maintaining software packages,
which practically always, but not always visibly, have deep hierar-
chies of dependencies, is not a solved issue. In these deep hierarchies
we must not only consider direct dependencies, but also

e transitive dependencies, including build tools like compilers,
e as well as the hosts building these dependencies,
e and so forth, recursively.

This is necessary to guard against backdoored dependencies, includ-
ing toolchains [19]. Sadly, in practice we often have to optimistically
trust build hosts with dependency specification and resolution, and
trust the software stack of the build hosts themselves. As a con-
sequence, our ability to react to security issues deep within these
hierarchies is severely lacking. See Figure 1 which illustrates the
concept of transitive trust.

As part of our efforts to prevent a compromise in the supply
chain we have to consider not only

PR 0 raip gy i Jas ety & VR SRR O Y] PRt e ST ARSI [y s e LRIt) o XFCRL St < LI

Cloud Build Systems: Output Lookup by Hash |

Definition |

Cloud build systems construct a dependency tree in which each node is identified
by a content or input hash.

Terminal inputs, which are leaves in the dependency tree, for example source files
or binary blobs, are referred to by content hash (a hash of their contents).

The inner nodes of the dependency tree are build steps, which are always identified
by input hash (a hash of their input set).

J z JOHANNES KEPLER
UNIVERSITY LINZ

Cloud Build Systems: Output Lookup by Hash Il

Definition Il

The input set of a build step consists of the build instructions that get executed
during the specific step, including any terminal inputs, and either

a) the content hashes of the outputs obtained by building all direct dependencies, or
b) the input hashes of all dependencies, including transitive dependencies via
recursion.

The two tracing approaches are known as using constructive traces (a), and
deep constructive traces up to terminal inputs (b).

J z JOHANNES KEPLER
UNIVERSITY LINZ

Cloud Build System Terms lllustrated

input set compute._ input hash

S

ot
0 oM
execute build step o9 Lo maps to
Y Y
5 *GeQ
output compute _ content hash

data structure at the @ of CBS

J z JOHANNES KEPLER
UNIVERSITY LINZ

Regular (Input-Addressed) Nix

compute

data structure at the @ of CBS

J z JOHANNES KEPLER
UNIVERSITY LINZ

Dependency Resolution

input set

reqgular derivation

unresolved

deep constructive trace
up to terminal inputs

>

dependencies

J z U JOHANNES KEPLER
UNIVERSITY LINZ

dependencies

~ » . -
......
L L]

constructive trace

Idealized Content-Addressed Nix

basic derivation

input set compute _ input hash
execute build step maps to
Y \J
output compute content hz

o NAR ha

data strdcture at the @ of CBS

J z JOHANNES KEPLER
UNIVERSITY LINZ

Example Derivation

simple.c

vold main () {
puts ("Hello NixCon 2024!");

J

derivation {

src = ./simple.c

Example Derivation

simple _builder.sh

export PATH="Scoreutils/bin:$gcc/bin"

mkdir -p Sout/bin
gcc -o Sout/bin/simple $src

simple.nix
derivation {

builder = "${pkgs.bash}/bin/bash";
args = [./simple builder.sh];

Example Derivation

simple.nix

let
pkgs = import <nixpkgs> { };

in

derivation {
name = "simple";
builder = "S{pkgs.bash}/bin/bash";
args = [./simple builder.sh];
inherit (pkgs) gcc coreutils;
src = ./simple.c;

system = builtins.currentSystem;

input hash » addressing

= Nix has a global namespace of store paths
® This has pros and cons

naming is hard

® input addressed derivation — derivation with recursive hashing of input derivations
= content addressed derivation — derivation with content hashing of input derivations

trust is moved out of the store not disappeared

= That's it. No magic here.

J z JOHANNES KEPLER
UNIVERSITY LINZ

Acknowledgements

This work has been carried out within the scope of Digidow, the Christian Doppler Laboratory
for Private Digital Authentication in the Physical World and has partially been supported by
the LIT Secure and Correct Systems Lab. We gratefully acknowledge financial support by the
Austrian Federal Ministry of Labour and Economy, the National Foundation for Research,
Technology and Development, the Christian Doppler Research Association, 3 Banken IT
GmbH, ekey biometric systems GmbH, Kepler Universitatsklinikum GmbH, NXP
Semiconductors Austria GmbH & Co KG, Osterreichische Staatsdruckerei GmbH, and the

State of Upper Austria.

J z JOHANNES KEPLER
UNIVERSITY LINZ

References

The simple derivation example is based on:

https://nixos.org/quides/nix-pills/07-working-derivation

Build systems a la carte:
https://doi.org/10.1145/3236774

Extending Cloud Build Systems To Eliminate Transitive Trust (Chapter 3.1 and Note 4):
https://www.digidow.eu/publications/2024-schwaighofer-
scored/Schwaighofer 2024 SCORED24 CloudBuildSystemsTrust.pdf

J z JOHANNES KEPLER
UNIVERSITY LINZ

https://nixos.org/guides/nix-pills/07-working-derivation
https://doi.org/10.1145/3236774
https://www.digidow.eu/publications/2024-schwaighofer-scored/Schwaighofer_2024_SCORED24_CloudBuildSystemsTrust.pdf
https://www.digidow.eu/publications/2024-schwaighofer-scored/Schwaighofer_2024_SCORED24_CloudBuildSystemsTrust.pdf

JOHANNES KEPLER
UNIVERSITAT LINZ

NixCon '24

hashes all the way down

Martin Schwaighofer > .:Jt::Ar::::YKEIILLZIER
Johannes Kepler University Linz Al ER
2024-10-25, Berlin (Germany)) juat

	Slide 1: hashes all the way down
	Slide 2: Cloud Build Systems
	Slide 3: Extending Cloud Build Systems to Eliminate Transitive Trust
	Slide 5: Cloud Build Systems: Output Lookup by Hash I
	Slide 6: Cloud Build Systems: Output Lookup by Hash II
	Slide 7: Cloud Build System Terms Illustrated
	Slide 8: Regular (Input-Addressed) Nix
	Slide 9: Dependency Resolution
	Slide 11: Idealized Content-Addressed Nix
	Slide 12: Example Derivation
	Slide 13: Example Derivation
	Slide 14: Example Derivation
	Slide 15
	Slide 16: Acknowledgements
	Slide 17: References
	Slide 18: hashes all the way down

