
JOHANNES KEPLER

UNIVERSITY LINZ

Altenberger Straße 69

4040 Linz, Austria

jku.at

Martin Schwaighofer

Johannes Kepler University Linz

2024-10-25, Berlin (Germany)

hashes all the way down

NixCon '24

Cloud Build Systems

Extending Cloud Build Systems
to Eliminate Transitive Trust

Cloud Build Systems: Output Lookup by Hash I

Definition I

Cloud build systems construct a dependency tree in which each node is identified

by a content or input hash.

Terminal inputs, which are leaves in the dependency tree, for example source files

or binary blobs, are referred to by content hash (a hash of their contents).

The inner nodes of the dependency tree are build steps, which are always identified

by input hash (a hash of their input set).

...

Cloud Build Systems: Output Lookup by Hash II

Definition II

The input set of a build step consists of the build instructions that get executed

during the specific step, including any terminal inputs, and either

a) the content hashes of the outputs obtained by building all direct dependencies, or

b) the input hashes of all dependencies, including transitive dependencies via

recursion.

The two tracing approaches are known as using constructive traces (a), and

deep constructive traces up to terminal inputs (b).

Cloud Build System Terms Illustrated

data structure at the of CBS

Regular (Input-Addressed) Nix

data structure at the of CBS

Dependency Resolution

Idealized Content-Addressed Nix

data structure at the of CBS

basic derivation

Example Derivation

simple.c

void main() {

 puts("Hello NixCon 2024!");

}

simple.nix

derivation {

 ...

 src = ./simple.c

 ...

}

Example Derivation

simple_builder.sh

export PATH="$coreutils/bin:$gcc/bin"

mkdir -p $out/bin

gcc -o $out/bin/simple $src

simple.nix

derivation {

 ...

 builder = "${pkgs.bash}/bin/bash";

 args = [./simple_builder.sh];

 ...

}

Example Derivation

simple.nix

let

 pkgs = import <nixpkgs> { };

in

derivation {

 name = "simple";

 builder = "${pkgs.bash}/bin/bash";

 args = [./simple_builder.sh];

 inherit (pkgs) gcc coreutils;

 src = ./simple.c;

 system = builtins.currentSystem;

}

input hash ⚭ addressing
▪ Nix has a global namespace of store paths

▪ This has pros and cons

naming is hard
▪ input addressed derivation → derivation with recursive hashing of input derivations

▪ content addressed derivation → derivation with content hashing of input derivations

trust is moved out of the store not disappeared

▪ That's it. No magic here.

Acknowledgements

This work has been carried out within the scope of Digidow, the Christian Doppler Laboratory

for Private Digital Authentication in the Physical World and has partially been supported by

the LIT Secure and Correct Systems Lab. We gratefully acknowledge financial support by the

Austrian Federal Ministry of Labour and Economy, the National Foundation for Research,

Technology and Development, the Christian Doppler Research Association, 3 Banken IT

GmbH, ekey biometric systems GmbH, Kepler Universitätsklinikum GmbH, NXP

Semiconductors Austria GmbH & Co KG, Österreichische Staatsdruckerei GmbH, and the

State of Upper Austria.

References

The simple derivation example is based on:

https://nixos.org/guides/nix-pills/07-working-derivation

Build systems a la carte:

https://doi.org/10.1145/3236774

Extending Cloud Build Systems To Eliminate Transitive Trust (Chapter 3.1 and Note 4):

https://www.digidow.eu/publications/2024-schwaighofer-

scored/Schwaighofer_2024_SCORED24_CloudBuildSystemsTrust.pdf

https://nixos.org/guides/nix-pills/07-working-derivation
https://doi.org/10.1145/3236774
https://www.digidow.eu/publications/2024-schwaighofer-scored/Schwaighofer_2024_SCORED24_CloudBuildSystemsTrust.pdf
https://www.digidow.eu/publications/2024-schwaighofer-scored/Schwaighofer_2024_SCORED24_CloudBuildSystemsTrust.pdf

JOHANNES KEPLER

UNIVERSITY LINZ

Altenberger Straße 69

4040 Linz, Austria

jku.at

Martin Schwaighofer

Johannes Kepler University Linz

2024-10-25, Berlin (Germany)

hashes all the way down

NixCon '24

	Slide 1: hashes all the way down
	Slide 2: Cloud Build Systems
	Slide 3: Extending Cloud Build Systems to Eliminate Transitive Trust
	Slide 5: Cloud Build Systems: Output Lookup by Hash I
	Slide 6: Cloud Build Systems: Output Lookup by Hash II
	Slide 7: Cloud Build System Terms Illustrated
	Slide 8: Regular (Input-Addressed) Nix
	Slide 9: Dependency Resolution
	Slide 11: Idealized Content-Addressed Nix
	Slide 12: Example Derivation
	Slide 13: Example Derivation
	Slide 14: Example Derivation
	Slide 15
	Slide 16: Acknowledgements
	Slide 17: References
	Slide 18: hashes all the way down

