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Build systems are awesome, terrifying — and unloved. They are used by every developer around the world, but
are rarely the object of study. In this paper we offer a systematic, and executable, framework for developing
and comparing build systems, viewing them as related points in landscape rather than as isolated phenomena.
By teasing apart existing build systems, we can recombine their components, allowing us to prototype new
build systems with desired properties.
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Abstract

Trusting the output of a build process requires trusting the build
process itself, and the build process of all inputs to that process, and
so on. Cloud build systems, like Nix or Bazel, allow their users to
precisely specify the build steps making up the intended software
supply chain, build the desired outputs as specified, and on this
basis delegate build steps to other builders or fill shared caches with
their outputs. Delegating build steps or consuming artifacts from
shared caches, however, requires trusting the executing builders,
which makes cloud build systems better suited for centrally man-
aged deployments than for use across distributed ecosystems. We
propose two key extensions to make cloud build systems better
suited for use in distributed ecosystems. Our approach attaches
metadata to the existing cryptographically secured data structures
and protocols, which already link build inputs and outputs for the
purpose of caching. Firstly, we include builder provenance data,
recording which builder executed the build, its software stack, and
a remote attestation, making this information verifiable. Secondly,
we include a record of the outcome of how the builder resolved
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1 Introduction
1.1 Motivation

Securely building, deploying, and maintaining software packages,
which practically always, but not always visibly, have deep hierar-
chies of dependencies, is not a solved issue. In these deep hierarchies
we must not only consider direct dependencies, but also

e transitive dependencies, including build tools like compilers,
e as well as the hosts building these dependencies,
e and so forth, recursively.

This is necessary to guard against backdoored dependencies, includ-
ing toolchains [19]. Sadly, in practice we often have to optimistically
trust build hosts with dependency specification and resolution, and
trust the software stack of the build hosts themselves. As a con-
sequence, our ability to react to security issues deep within these
hierarchies is severely lacking. See Figure 1 which illustrates the
concept of transitive trust.

As part of our efforts to prevent a compromise in the supply
chain we have to consider not only
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Cloud Build Systems: Output Lookup by Hash |

Definition |

Cloud build systems construct a dependency tree in which each node is identified
by a content or input hash.

Terminal inputs, which are leaves in the dependency tree, for example source files
or binary blobs, are referred to by content hash (a hash of their contents).

The inner nodes of the dependency tree are build steps, which are always identified
by input hash (a hash of their input set).
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Cloud Build Systems: Output Lookup by Hash Il

Definition Il

The input set of a build step consists of the build instructions that get executed
during the specific step, including any terminal inputs, and either

a) the content hashes of the outputs obtained by building all direct dependencies, or
b) the input hashes of all dependencies, including transitive dependencies via
recursion.

The two tracing approaches are known as using constructive traces (a), and
deep constructive traces up to terminal inputs (b).
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Cloud Build System Terms lllustrated
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data structure at the @ of CBS
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Regular (Input-Addressed) Nix

compute

data structure at the @ of CBS
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Dependency Resolution

input set

reqgular derivation
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Idealized Content-Addressed Nix

basic derivation

input set compute  _ input hash
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data strdcture at the @ of CBS

J z JOHANNES KEPLER
UNIVERSITY LINZ



Example Derivation

simple.c

vold main () {
puts ("Hello NixCon 2024!");

J

derivation {

src = ./simple.c



Example Derivation

simple _builder.sh

export PATH="Scoreutils/bin:$gcc/bin"

mkdir -p Sout/bin
gcc -o Sout/bin/simple $src

simple.nix
derivation {

builder = "${pkgs.bash}/bin/bash";
args = [ ./simple builder.sh ];



Example Derivation

simple.nix

let
pkgs = import <nixpkgs> { };

in

derivation {
name = "simple";
builder = "S{pkgs.bash}/bin/bash";
args = [ ./simple builder.sh ];
inherit (pkgs) gcc coreutils;
src = ./simple.c;

system = builtins.currentSystem;



input hash » addressing

= Nix has a global namespace of store paths
® This has pros and cons

naming is hard

® input addressed derivation — derivation with recursive hashing of input derivations
= content addressed derivation — derivation with content hashing of input derivations

trust is moved out of the store not disappeared

= That's it. No magic here.
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