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Cloud Build Systems



Extending Cloud Build Systems
to Eliminate Transitive Trust



Cloud Build Systems: Output Lookup by Hash I

Definition I

Cloud build systems construct a dependency tree in which each node is identified

by a content or input hash.

Terminal inputs, which are leaves in the dependency tree, for example source files

or binary blobs, are referred to by content hash (a hash of their contents).

The inner nodes of the dependency tree are build steps, which are always identified

by input hash (a hash of their input set).

...



Cloud Build Systems: Output Lookup by Hash II

Definition II

The input set of a build step consists of the build instructions that get executed

during the specific step, including any terminal inputs, and either

a) the content hashes of the outputs obtained by building all direct dependencies, or

b) the input hashes of all dependencies, including transitive dependencies via 

recursion.

The two tracing approaches are known as using constructive traces (a), and

deep constructive traces up to terminal inputs (b).



Cloud Build System Terms Illustrated

data structure at the  of CBS



Regular (Input-Addressed) Nix

data structure at the  of CBS



Dependency Resolution



Idealized Content-Addressed Nix

data structure at the  of CBS

basic derivation



Example Derivation

simple.c

void main() {

 puts("Hello NixCon 2024!");

}

simple.nix

derivation {

 ...

 src = ./simple.c

 ...

}



Example Derivation

simple_builder.sh

export PATH="$coreutils/bin:$gcc/bin"

mkdir -p $out/bin

gcc -o $out/bin/simple $src

simple.nix

derivation {

 ...

 builder = "${pkgs.bash}/bin/bash";

 args = [ ./simple_builder.sh ];

 ...

}



Example Derivation

simple.nix

let

 pkgs = import <nixpkgs> { };

in

derivation {

 name = "simple";

 builder = "${pkgs.bash}/bin/bash";

 args = [ ./simple_builder.sh ];

 inherit (pkgs) gcc coreutils;

 src = ./simple.c;

 system = builtins.currentSystem;

}



input hash ⚭ addressing
▪ Nix has a global namespace of store paths

▪ This has pros and cons

naming is hard
▪ input addressed derivation → derivation with recursive hashing of input derivations

▪ content addressed derivation → derivation with content hashing of input derivations

trust is moved out of the store not disappeared

▪ That's it. No magic here.
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