
JOHANNES KEPLER 

UNIVERSITY LINZ

Altenberger Straße 69

4040 Linz, Austria

jku.at

Martin Schwaighofer, Michael Roland, René Mayrhofer

Johannes Kepler University Linz

2024-10-25, Berlin (Germany)

rebuilding builders
instead of trusting trust

NixCon '24



Problem Space

trusts trusts

transitively trusts

Problem Statement: trusting compiled software necessitates trusting its
build environment (recursively) [3]

Proposed Solution:
What: eliminate transitive trust for/using cloud build systems [2]
How: make trust relationships of builders as independent as possible
Why: enable distributed ecosystem of builders building open source components

Related Work: in-toto [4], gitian [1], Trustix [5]

rebuilding builders instead of trusting trust,
Martin Schwaighofer, Michael Roland, René Mayrhofer 2/19



Problem Space

trusts trusts

transitively trusts

Problem Statement: trusting compiled software necessitates trusting its
build environment (recursively) [3]

Proposed Solution:
What: eliminate transitive trust for/using cloud build systems [2]
How: make trust relationships of builders as independent as possible
Why: enable distributed ecosystem of builders building open source components

Related Work: in-toto [4], gitian [1], Trustix [5]

rebuilding builders instead of trusting trust,
Martin Schwaighofer, Michael Roland, René Mayrhofer 2/19



Problem Space

trusts trusts

transitively trusts

Problem Statement: trusting compiled software necessitates trusting its
build environment (recursively) [3]

Proposed Solution:
What: eliminate transitive trust for/using cloud build systems [2]
How: make trust relationships of builders as independent as possible
Why: enable distributed ecosystem of builders building open source components

Related Work: in-toto [4], gitian [1], Trustix [5]

rebuilding builders instead of trusting trust,
Martin Schwaighofer, Michael Roland, René Mayrhofer 2/19



Presentation Overview

Defining Properties of Cloud Build System
Output Lookup by Hash
Hermetic Isolation

Data Structures
Trace Map Entry
Provenance Log Entry← introduced by us

Usage and Trust Model
Threat Model

1. introduce threat
2. add data to Provenance Log Entry to mitigate threat
3. repeat

rebuilding builders instead of trusting trust,
Martin Schwaighofer, Michael Roland, René Mayrhofer 3/19



Presentation Overview

Defining Properties of Cloud Build System
Output Lookup by Hash
Hermetic Isolation

Data Structures
Trace Map Entry
Provenance Log Entry← introduced by us

Usage and Trust Model
Threat Model

1. introduce threat
2. add data to Provenance Log Entry to mitigate threat
3. repeat

rebuilding builders instead of trusting trust,
Martin Schwaighofer, Michael Roland, René Mayrhofer 3/19



Presentation Overview

Defining Properties of Cloud Build System
Output Lookup by Hash
Hermetic Isolation

Data Structures
Trace Map Entry
Provenance Log Entry← introduced by us

Usage and Trust Model
Threat Model

1. introduce threat
2. add data to Provenance Log Entry to mitigate threat
3. repeat

rebuilding builders instead of trusting trust,
Martin Schwaighofer, Michael Roland, René Mayrhofer 3/19



Cloud Build Systems: Output Lookup by Hash

compute

compute

execute build step maps to

input set input hash

content hashoutput

rebuilding builders instead of trusting trust,
Martin Schwaighofer, Michael Roland, René Mayrhofer 4/19



Cloud Build Systems: Hermetic Isolation

Build steps can only access dependencies, which are part of the input set.

■ Ensures input set is complete

■ Prevents tampering during build

■ Essential for trustworthy remote building and caching

■ Separates intended dependencies (input set) from both
■ inadvertent dependencies like kernel, drivers, cloud build system, and
■ coincidental dependencies like random stuff on the system

rebuilding builders instead of trusting trust,
Martin Schwaighofer, Michael Roland, René Mayrhofer 5/19



Cloud Build Systems: Hermetic Isolation

Build steps can only access dependencies, which are part of the input set.

■ Ensures input set is complete

■ Prevents tampering during build

■ Essential for trustworthy remote building and caching

■ Separates intended dependencies (input set) from both
■ inadvertent dependencies like kernel, drivers, cloud build system, and
■ coincidental dependencies like random stuff on the system

rebuilding builders instead of trusting trust,
Martin Schwaighofer, Michael Roland, René Mayrhofer 5/19



Data Structures

Trace Map Entry

input hash, content hash of mapped output

data structure (often) at the heart of cloud build systems

Provenance Log Entry ø

input hash, content hash of mapped output + arbitrary provenance data

cryptographically secured, communicates trust, extension, extendable

rebuilding builders instead of trusting trust,
Martin Schwaighofer, Michael Roland, René Mayrhofer 6/19



Data Structures

Trace Map Entry

input hash, content hash of mapped output

data structure (often) at the heart of cloud build systems

Provenance Log Entry ø

input hash, content hash of mapped output + arbitrary provenance data

cryptographically secured, communicates trust, extension, extendable

rebuilding builders instead of trusting trust,
Martin Schwaighofer, Michael Roland, René Mayrhofer 6/19



Trust Model(s)

■ set of trusted public keys

■ additional constraints on provenance data

■ drives a binary trusted/untrusted decision

■ independent from other builders (as much as possible)

■ Example trust models:
■ one trusted builder or entity / centralized infra
■ 2 out of 3 of (independent) trusted builders agreeing
■ quorum of all builders that meet criteria agreeing

rebuilding builders instead of trusting trust,
Martin Schwaighofer, Michael Roland, René Mayrhofer 7/19



Trust Model(s)

■ set of trusted public keys

■ additional constraints on provenance data

■ drives a binary trusted/untrusted decision

■ independent from other builders (as much as possible)

■ Example trust models:
■ one trusted builder or entity / centralized infra
■ 2 out of 3 of (independent) trusted builders agreeing
■ quorum of all builders that meet criteria agreeing

rebuilding builders instead of trusting trust,
Martin Schwaighofer, Michael Roland, René Mayrhofer 7/19



Trust Model(s)

■ set of trusted public keys

■ additional constraints on provenance data

■ drives a binary trusted/untrusted decision

■ independent from other builders (as much as possible)

■ Example trust models:
■ one trusted builder or entity / centralized infra
■ 2 out of 3 of (independent) trusted builders agreeing
■ quorum of all builders that meet criteria agreeing

rebuilding builders instead of trusting trust,
Martin Schwaighofer, Michael Roland, René Mayrhofer 7/19



Usage and Threat Model

What we are trying to do:
checked in build files ➔ dependency tree ➔ input hashes ➔

obtain trustworthy artifacts from caches

user’s trust model ensures:
■ user only accepts trustworthy outputs from caches (when building)
■ can verify every link in the dependency tree (when verifying)

attacker wants to bypass user’s declared/intended trust model:
■ first assuming user only trusts honest builders (Threat 1 - Threat 3)
■ then assuming user may trust dishonest builders as well (Threat 4 - Threat 5)

rebuilding builders instead of trusting trust,
Martin Schwaighofer, Michael Roland, René Mayrhofer 8/19



Usage and Threat Model

What we are trying to do:
checked in build files ➔ dependency tree ➔ input hashes ➔

obtain trustworthy artifacts from caches

user’s trust model ensures:
■ user only accepts trustworthy outputs from caches (when building)
■ can verify every link in the dependency tree (when verifying)

attacker wants to bypass user’s declared/intended trust model:
■ first assuming user only trusts honest builders (Threat 1 - Threat 3)
■ then assuming user may trust dishonest builders as well (Threat 4 - Threat 5)

rebuilding builders instead of trusting trust,
Martin Schwaighofer, Michael Roland, René Mayrhofer 8/19



Usage and Threat Model

What we are trying to do:
checked in build files ➔ dependency tree ➔ input hashes ➔

obtain trustworthy artifacts from caches

user’s trust model ensures:
■ user only accepts trustworthy outputs from caches (when building)
■ can verify every link in the dependency tree (when verifying)

attacker wants to bypass user’s declared/intended trust model:
■ first assuming user only trusts honest builders (Threat 1 - Threat 3)
■ then assuming user may trust dishonest builders as well (Threat 4 - Threat 5)

rebuilding builders instead of trusting trust,
Martin Schwaighofer, Michael Roland, René Mayrhofer 8/19



Threat 1 and 2: Unclear Origin of Outputs

■ signatures (in Nix) originally designed for transport security

■ signatures do not state who the builder was

■ Threat 1: Who are we trusting to be an honest builder?

■ Threat 2: How can we determine reproducibility from provenance data?

Provenance Log Entry ø

input hash, content hash of mapped output

, claim to have built this [true/false]

rebuilding builders instead of trusting trust,
Martin Schwaighofer, Michael Roland, René Mayrhofer 9/19



Threat 1 and 2: Unclear Origin of Outputs

■ signatures (in Nix) originally designed for transport security

■ signatures do not state who the builder was

■ Threat 1: Who are we trusting to be an honest builder?

■ Threat 2: How can we determine reproducibility from provenance data?

Provenance Log Entry ø

input hash, content hash of mapped output, claim to have built this [true/false]

rebuilding builders instead of trusting trust,
Martin Schwaighofer, Michael Roland, René Mayrhofer 9/19



Threat 3: Dependency Resolution Gap

■ cannot trust other builders with dependency resolution
■ input set must be constructed using resolved dependencies or
■ resolved dependencies must be part of provenance data

Provenance Log Entry ø

input hash, content hash of mapped output, claim to have built this [true/false]

,
resolved dependencies if necessary

rebuilding builders instead of trusting trust,
Martin Schwaighofer, Michael Roland, René Mayrhofer 10/19



Threat 3: Dependency Resolution Gap

■ cannot trust other builders with dependency resolution
■ input set must be constructed using resolved dependencies or
■ resolved dependencies must be part of provenance data

Provenance Log Entry ø

input hash, content hash of mapped output, claim to have built this [true/false],
resolved dependencies if necessary

rebuilding builders instead of trusting trust,
Martin Schwaighofer, Michael Roland, René Mayrhofer 10/19



Cloud Build Systems: Output Lookup by Hash

Definition

Cloud build systems construct a dependency tree in which each node is identified
by a content or input hash.

Terminal inputs, which are leaves in the dependency tree, for example source files
or binary blobs, are referred to by content hash (a hash of their contents).

The inner nodes of the dependency tree are build steps, which are always identified
by input hash (a hash of their input set).

rebuilding builders instead of trusting trust,
Martin Schwaighofer, Michael Roland, René Mayrhofer 11/19



Cloud Build Systems: Output Lookup by Hash

Definition

The input set of a build step consists of the build instructions that get executed
during the specific step, including any terminal inputs, and either

(a) the content hashes of the outputs obtained by building all direct dependencies,
or

(b) the input hashes of all dependencies, including transitive dependencies via re-
cursion.

The two tracing approaches are known as using constructive traces (a), and
deep constructive traces up to terminal inputs (b).

rebuilding builders instead of trusting trust,
Martin Schwaighofer, Michael Roland, René Mayrhofer 12/19



Tracing Method Comparison

trace

input set
deep constructive trace
up to terminal inputs

constructive trace

buildresolveunresolved
dependencies

resolved
dependencies

output

rebuilding builders instead of trusting trust,
Martin Schwaighofer, Michael Roland, René Mayrhofer 13/19



Cloud Build Systems: Output Lookup by Hash

compute

compute

execute build step maps to

input set input hash

content hashoutput

rebuilding builders instead of trusting trust,
Martin Schwaighofer, Michael Roland, René Mayrhofer 14/19



Threat 4 and 5: Dishonest Builders or Outdated Trust Model

■ Threat 4: What if builders lie on purpose?

■ verify instead of trust

■ Threat 5: What if builders are vulnerable or become compromised?

■ increase security over time, recover from compromises

Provenance Log Entry ø

input hash, content hash of mapped output, claim to have built [true/false],
resolved dependencies if necessary

, claimed source reference, remote
attestation

rebuilding builders instead of trusting trust,
Martin Schwaighofer, Michael Roland, René Mayrhofer 15/19



Threat 4 and 5: Dishonest Builders or Outdated Trust Model

■ Threat 4: What if builders lie on purpose?

■ verify instead of trust

■ Threat 5: What if builders are vulnerable or become compromised?

■ increase security over time, recover from compromises

Provenance Log Entry ø

input hash, content hash of mapped output, claim to have built [true/false],
resolved dependencies if necessary, claimed source reference, remote
attestation

rebuilding builders instead of trusting trust,
Martin Schwaighofer, Michael Roland, René Mayrhofer 15/19



Remote Attestation

■ Based on TPM 2.0 or Android Key Attestation for example

■ Proves key generation in secure hardware

■ Incorporates measured boot values
■ Corresponds to built and booted OS image

■ Uses as nonce:
■ Trace map entry
■ Monotonically increasing counter

rebuilding builders instead of trusting trust,
Martin Schwaighofer, Michael Roland, René Mayrhofer 16/19



Verify Remote Attestation

The verifier should then be able to

■ verify the claimed software configuration of the builder against the verifiers trust model, which may or
may not mandate reproducibility,

■ derive the expected measurement values for measured boot from the built software configuration,

■ verify the signature on the provenance log entry,

■ verify from the contents of the remote attestation, that

■ the included trace map entries match up,
■ the upper level measurement values from measured boot match up, the lower level values are

trusted,
■ the attestation itself is valid, and
■ the attestation is about the intended signing key.

rebuilding builders instead of trusting trust,
Martin Schwaighofer, Michael Roland, René Mayrhofer 17/19



Conclusion

■ Eliminated implicit transitive trust

■ Linked provenance data to build steps

■ Make trust in build hosts explicit and verify

■ Decoupled creation and verification of provenance data

■ Potential path forward for supply chain security

rebuilding builders instead of trusting trust,
Martin Schwaighofer, Michael Roland, René Mayrhofer 18/19



Future Work

■ Implement proposed extensions in Nix

■ Investigate performance implications

■ Develop data format for provenance data

■ Address open questions on bootstrapping and necessary sandbox improvements

■ let’s work on this together

rebuilding builders instead of trusting trust,
Martin Schwaighofer, Michael Roland, René Mayrhofer 19/19



JOHANNES KEPLER
UNIVERSITY LINZ
Altenberger Straße 69
4040 Linz, Austria
jku.at

NixCon ’24

rebuilding builders
instead of trusting trust

Martin Schwaighofer, Michael Roland, René Mayrhofer
Johannes Kepler University Linz
2024-10-25, Berlin (Germany)

Email: martin.schwaighofer@ins.jku.at
DOI: https://doi.org/10.1145/3689944.3696169

https://jku.at/
mailto:martin.schwaighofer@ins.jku.at
https://doi.org/10.1145/3689944.3696169
https://www.digidow.eu/publications/2024-schwaighofer-scored/Schwaighofer_2024_SCORED24_CloudBuildSystemsTrust.pdf


Bonus Slides

rebuilding builders instead of trusting trust,
Martin Schwaighofer, Michael Roland, René Mayrhofer 21/19



Gitian

Commonalities:

■ Signed record of build inputs and
outputs

■ Aims to increase trust in software
supply chain

■ Focus on reproducible builds

Differences:

■ Single build step

■ Relies on trusted Debian packages

■ Does not address transitive trust issues

■ Better sandboxing using VMs

rebuilding builders instead of trusting trust,
Martin Schwaighofer, Michael Roland, René Mayrhofer 22/19



in-toto

Commonalities:

■ Focuses on software supply chain
integrity

■ Validates signed records of build inputs
and outputs against layout

■ Uses cryptographic signatures for
verification

■ Allows for distributed build and
deployment pipelines

■ Attestation Framework fills similar role
to Provenance Data

Differences:

■ assigns steps to specific authorized
parties

■ can be deployed to describe existing
build/deployment pipelines

■ not a build system

rebuilding builders instead of trusting trust,
Martin Schwaighofer, Michael Roland, René Mayrhofer 23/19



Trustix

■ Replaces signatures in Nix with transparency logs

■ Additional implications because of switch to transparency logs

■ Anchored to builders, not caches (no need for boolean flag)

■ Trust Model to distribute trust among various parties

■ Practical implementation, abstractly described and extended by this work

■ Might be analyzed in future work

rebuilding builders instead of trusting trust,
Martin Schwaighofer, Michael Roland, René Mayrhofer 24/19



Cloud Build Systems: Hermetic Isolation

Definition

In a cloud build system an attacker must not be able to bypass the isolation of
executed build steps with adversarial inputs.

We can achieve this by suitably isolating the execution of build steps from the sys-
tem, each other, and the network.

■ Ensures input set is complete

■ Prevents tampering during build

■ Essential for trustworthy remote building and caching

rebuilding builders instead of trusting trust,
Martin Schwaighofer, Michael Roland, René Mayrhofer 25/19



Backup Questions by Claude.ai

■ How do you envision the adoption process for these extensions in existing cloud build systems?
What challenges might arise?

■ Could you elaborate on how your proposed system would handle scenarios where a previously
trusted builder becomes compromised?

■ How does your approach compare to or complement other supply chain security initiatives and
frameworks like SLSA or in-toto?

■ How might this system be extended to handle proprietary or closed-source components in a
software supply chain?

■ How does your approach address the balance between security and usability for developers and
end-users?

■ What are the next steps in your research or potential implementation of these ideas?

rebuilding builders instead of trusting trust,
Martin Schwaighofer, Michael Roland, René Mayrhofer 26/19



Acknowledgements

We want to thank Linus Heckemann for first pointing out to us the gaps around the outcome
of dependency resolution, which exist in Nix, and which we address in this paper.

This work has been carried out within the scope of Digidow, the Christian Doppler Laboratory
for Private Digital Authentication in the Physical World and has partially been supported by
the LIT Secure and Correct Systems Lab. We gratefully acknowledge financial support by the
Austrian Federal Ministry of Labour and Economy, the National Foundation for Research,
Technology and Development, the Christian Doppler Research Association, 3 Banken IT
GmbH, ekey biometric systems GmbH, Kepler Universitätsklinikum GmbH, NXP
Semiconductors Austria GmbH & Co KG, Österreichische Staatsdruckerei GmbH, and the
State of Upper Austria.

rebuilding builders instead of trusting trust,
Martin Schwaighofer, Michael Roland, René Mayrhofer 27/19



References I

[1] Gitian-Builder Contributors. 2024. gitian-builder: Build packages in a secure
deterministic fashion inside a VM. Retrieved 07/05/2024 from
https://github.com/devrandom/gitian-builder.

[2] Andrey Mokhov, Neil Mitchell, and Simon Peyton Jones. 2018. Build Systems à
La Carte. Proc. ACM Program. Lang. 2, ICFP, Article 79, (July 2018), 29 pages.
DOI: 10.1145/3236774.

[3] Ken Thompson. 1984. Reflections on trusting trust. Communications of the ACM,
27, 8, 761–763. DOI: 10.1145/358198.358210.

rebuilding builders instead of trusting trust,
Martin Schwaighofer, Michael Roland, René Mayrhofer 28/19

https://github.com/devrandom/gitian-builder
https://doi.org/10.1145/3236774
https://doi.org/10.1145/358198.358210


References II

[4] Santiago Torres-Arias. 2020. In-toto: Practical Software Supply Chain Security.
PhD thesis. New York University Tandon School of Engineering.

[5] Trustix Project Contributors. 2024. Trustix: Distributed trust and reproducibility
tracking for binary caches. Retrieved 05/08/2024 from
https://github.com/nix-community/trustix.

rebuilding builders instead of trusting trust,
Martin Schwaighofer, Michael Roland, René Mayrhofer 29/19

https://github.com/nix-community/trustix

	Appendix
	Bonus Slides
	References


